Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386483113> ?p ?o ?g. }
- W4386483113 endingPage "34170" @default.
- W4386483113 startingPage "34160" @default.
- W4386483113 abstract "Artificial intelligence algorithms have been increasingly applied in drug development due to their efficiency and effectiveness. Deep-learning-based drug repurposing can contribute to the identification of novel therapeutic applications for drugs with other indications. The current study used a trained deep-learning model to screen an FDA-approved drug library for novel COX-2 inhibitors. Reference COX-2 data sets, composed of active and decoy compounds, were obtained from the DUD-E database. To extract molecular features, compounds were subjected to RDKit, a cheminformatic toolkit. GraphConvMol, a graph convolutional network model from DeepChem, was applied to obtain a predictive model from the DUD-E data sets. Then, the COX-2 inhibitory potential of the FDA-approved drugs was predicted using the trained deep-learning model. Vismodegib, an anticancer agent that inhibits the hedgehog signaling pathway by binding to smoothened, was predicted to inhibit COX-2. Noticeably, some compounds that exhibit high potential from the prediction were known to be COX-2 inhibitors, indicating the prediction model’s liability. To confirm the COX-2 inhibition activity of vismodegib, molecular docking was carried out with the reference compounds of the COX-2 inhibitor, celecoxib, and ibuprofen. Furthermore, the experimental examination of COX-2 inhibition was also carried out using a cell culture study. Results showed that vismodegib exhibited a highly comparable COX-2 inhibitory activity compared to celecoxib and ibuprofen. In conclusion, the deep-learning model can efficiently improve the virtual screening of drugs, and vismodegib can be used as a novel COX-2 inhibitor." @default.
- W4386483113 created "2023-09-07" @default.
- W4386483113 creator A5002435864 @default.
- W4386483113 creator A5025058637 @default.
- W4386483113 creator A5033042170 @default.
- W4386483113 creator A5043175004 @default.
- W4386483113 creator A5068799024 @default.
- W4386483113 creator A5072733589 @default.
- W4386483113 creator A5073616228 @default.
- W4386483113 creator A5091654903 @default.
- W4386483113 date "2023-09-06" @default.
- W4386483113 modified "2023-09-27" @default.
- W4386483113 title "Vismodegib Identified as a Novel COX-2 Inhibitor via Deep-Learning-Based Drug Repositioning and Molecular Docking Analysis" @default.
- W4386483113 cites W1901616594 @default.
- W4386483113 cites W1968319881 @default.
- W4386483113 cites W2006577697 @default.
- W4386483113 cites W2071890540 @default.
- W4386483113 cites W2122258326 @default.
- W4386483113 cites W2126466142 @default.
- W4386483113 cites W2132629607 @default.
- W4386483113 cites W2172012214 @default.
- W4386483113 cites W2409146003 @default.
- W4386483113 cites W2521444171 @default.
- W4386483113 cites W2783897572 @default.
- W4386483113 cites W2889300381 @default.
- W4386483113 cites W2938101840 @default.
- W4386483113 cites W2951512731 @default.
- W4386483113 cites W2969715170 @default.
- W4386483113 cites W2972418846 @default.
- W4386483113 cites W3014476516 @default.
- W4386483113 cites W3017154096 @default.
- W4386483113 cites W3022575312 @default.
- W4386483113 cites W3023126697 @default.
- W4386483113 cites W3041306552 @default.
- W4386483113 cites W3092557015 @default.
- W4386483113 cites W3106138259 @default.
- W4386483113 cites W3182055317 @default.
- W4386483113 cites W3189831819 @default.
- W4386483113 cites W3193638860 @default.
- W4386483113 cites W3202939305 @default.
- W4386483113 cites W3208898778 @default.
- W4386483113 cites W3210388045 @default.
- W4386483113 cites W4224279656 @default.
- W4386483113 cites W4281893304 @default.
- W4386483113 cites W4313585439 @default.
- W4386483113 cites W4323807713 @default.
- W4386483113 cites W4361272720 @default.
- W4386483113 cites W4364375511 @default.
- W4386483113 cites W4377157224 @default.
- W4386483113 cites W4378575566 @default.
- W4386483113 doi "https://doi.org/10.1021/acsomega.3c05425" @default.
- W4386483113 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37744812" @default.
- W4386483113 hasPublicationYear "2023" @default.
- W4386483113 type Work @default.
- W4386483113 citedByCount "0" @default.
- W4386483113 crossrefType "journal-article" @default.
- W4386483113 hasAuthorship W4386483113A5002435864 @default.
- W4386483113 hasAuthorship W4386483113A5025058637 @default.
- W4386483113 hasAuthorship W4386483113A5033042170 @default.
- W4386483113 hasAuthorship W4386483113A5043175004 @default.
- W4386483113 hasAuthorship W4386483113A5068799024 @default.
- W4386483113 hasAuthorship W4386483113A5072733589 @default.
- W4386483113 hasAuthorship W4386483113A5073616228 @default.
- W4386483113 hasAuthorship W4386483113A5091654903 @default.
- W4386483113 hasBestOaLocation W43864831131 @default.
- W4386483113 hasConcept C103637391 @default.
- W4386483113 hasConcept C108583219 @default.
- W4386483113 hasConcept C145837895 @default.
- W4386483113 hasConcept C154945302 @default.
- W4386483113 hasConcept C159110408 @default.
- W4386483113 hasConcept C185592680 @default.
- W4386483113 hasConcept C2776467144 @default.
- W4386483113 hasConcept C2779545874 @default.
- W4386483113 hasConcept C2780035454 @default.
- W4386483113 hasConcept C41008148 @default.
- W4386483113 hasConcept C41685203 @default.
- W4386483113 hasConcept C55493867 @default.
- W4386483113 hasConcept C62478195 @default.
- W4386483113 hasConcept C71924100 @default.
- W4386483113 hasConcept C88498014 @default.
- W4386483113 hasConcept C98274493 @default.
- W4386483113 hasConceptScore W4386483113C103637391 @default.
- W4386483113 hasConceptScore W4386483113C108583219 @default.
- W4386483113 hasConceptScore W4386483113C145837895 @default.
- W4386483113 hasConceptScore W4386483113C154945302 @default.
- W4386483113 hasConceptScore W4386483113C159110408 @default.
- W4386483113 hasConceptScore W4386483113C185592680 @default.
- W4386483113 hasConceptScore W4386483113C2776467144 @default.
- W4386483113 hasConceptScore W4386483113C2779545874 @default.
- W4386483113 hasConceptScore W4386483113C2780035454 @default.
- W4386483113 hasConceptScore W4386483113C41008148 @default.
- W4386483113 hasConceptScore W4386483113C41685203 @default.
- W4386483113 hasConceptScore W4386483113C55493867 @default.
- W4386483113 hasConceptScore W4386483113C62478195 @default.
- W4386483113 hasConceptScore W4386483113C71924100 @default.
- W4386483113 hasConceptScore W4386483113C88498014 @default.
- W4386483113 hasConceptScore W4386483113C98274493 @default.
- W4386483113 hasFunder F4320322120 @default.