Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386487254> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4386487254 abstract "With the advent of the era of big data, the information data is exploding. How to dig the hidden value and information matching from the massive information data is a far-reaching research topic. In China's 13th Five-Year Plan, the state has included the analysis and application of big data in the national strategic level, and data is value. Under the background of big data, e-commerce has entered a more diversified information development era, and people's recognition of e-commerce is increasing day by day. Online shopping has gradually become an indispensable part of life. Taobao, JD.COM and other platforms are deeply involved in the C2C field, and their own growth has also changed the traditional commercial marketing mode, thus promoting the sustained and vigorous development of domestic e-commerce business. The progress of the industry has brought great profits and convenience, but the challenges it faces are becoming increasingly severe. The key problems are as follows: First, the problem of data overload. The booming business of e-commerce makes the data of related users and commodities explode, and it is increasingly difficult for e-commerce users to find the required information in time and accurately from the complicated data. Second, the problem of cold start. The new user has no corresponding historical behavior data for the time being, and the platform can't recommend suitable products to him through prediction, that is, the user starts cold. Cold start of goods is the same. The background of e-commerce website can mine users' consumption or browsing records, establish users' consumption preference model, and recommend excellent products to targeted customers with appropriate recommendation technology, thus reducing consumers' time and energy in searching for their real favorite products. Multi-dimensional dynamic recommendation system of mobile e-commerce platform using an improved collaborative filtering algorithm updates the weights of user feature vectors and commodity feature vectors according to the real-time changes of user behavior, and improves the dynamic updating ability of the recommendation system, so as to improve the accuracy of recommendation and the satisfaction of users." @default.
- W4386487254 created "2023-09-07" @default.
- W4386487254 creator A5027727296 @default.
- W4386487254 creator A5047612807 @default.
- W4386487254 creator A5077965872 @default.
- W4386487254 date "2023-05-01" @default.
- W4386487254 modified "2023-09-27" @default.
- W4386487254 title "Research on Multi-Dimensional Dynamic Recommendation Technology of Mobile E-Commerce Platform Based on Collaborative Filtering Algorithm" @default.
- W4386487254 doi "https://doi.org/10.1109/icnetic59568.2023.00116" @default.
- W4386487254 hasPublicationYear "2023" @default.
- W4386487254 type Work @default.
- W4386487254 citedByCount "0" @default.
- W4386487254 crossrefType "proceedings-article" @default.
- W4386487254 hasAuthorship W4386487254A5027727296 @default.
- W4386487254 hasAuthorship W4386487254A5047612807 @default.
- W4386487254 hasAuthorship W4386487254A5077965872 @default.
- W4386487254 hasConcept C111919701 @default.
- W4386487254 hasConcept C124101348 @default.
- W4386487254 hasConcept C136764020 @default.
- W4386487254 hasConcept C186625053 @default.
- W4386487254 hasConcept C197378717 @default.
- W4386487254 hasConcept C202444582 @default.
- W4386487254 hasConcept C21569690 @default.
- W4386487254 hasConcept C2522767166 @default.
- W4386487254 hasConcept C26517878 @default.
- W4386487254 hasConcept C33923547 @default.
- W4386487254 hasConcept C38652104 @default.
- W4386487254 hasConcept C41008148 @default.
- W4386487254 hasConcept C48677424 @default.
- W4386487254 hasConcept C557471498 @default.
- W4386487254 hasConcept C75684735 @default.
- W4386487254 hasConcept C78597825 @default.
- W4386487254 hasConcept C9652623 @default.
- W4386487254 hasConceptScore W4386487254C111919701 @default.
- W4386487254 hasConceptScore W4386487254C124101348 @default.
- W4386487254 hasConceptScore W4386487254C136764020 @default.
- W4386487254 hasConceptScore W4386487254C186625053 @default.
- W4386487254 hasConceptScore W4386487254C197378717 @default.
- W4386487254 hasConceptScore W4386487254C202444582 @default.
- W4386487254 hasConceptScore W4386487254C21569690 @default.
- W4386487254 hasConceptScore W4386487254C2522767166 @default.
- W4386487254 hasConceptScore W4386487254C26517878 @default.
- W4386487254 hasConceptScore W4386487254C33923547 @default.
- W4386487254 hasConceptScore W4386487254C38652104 @default.
- W4386487254 hasConceptScore W4386487254C41008148 @default.
- W4386487254 hasConceptScore W4386487254C48677424 @default.
- W4386487254 hasConceptScore W4386487254C557471498 @default.
- W4386487254 hasConceptScore W4386487254C75684735 @default.
- W4386487254 hasConceptScore W4386487254C78597825 @default.
- W4386487254 hasConceptScore W4386487254C9652623 @default.
- W4386487254 hasLocation W43864872541 @default.
- W4386487254 hasOpenAccess W4386487254 @default.
- W4386487254 hasPrimaryLocation W43864872541 @default.
- W4386487254 hasRelatedWork W2103972152 @default.
- W4386487254 hasRelatedWork W2153233947 @default.
- W4386487254 hasRelatedWork W2164136269 @default.
- W4386487254 hasRelatedWork W2368095327 @default.
- W4386487254 hasRelatedWork W320429480 @default.
- W4386487254 hasRelatedWork W4225137864 @default.
- W4386487254 hasRelatedWork W4231377631 @default.
- W4386487254 hasRelatedWork W4285196862 @default.
- W4386487254 hasRelatedWork W4285816532 @default.
- W4386487254 hasRelatedWork W4379157668 @default.
- W4386487254 isParatext "false" @default.
- W4386487254 isRetracted "false" @default.
- W4386487254 workType "article" @default.