Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386491566> ?p ?o ?g. }
- W4386491566 endingPage "113972" @default.
- W4386491566 startingPage "113972" @default.
- W4386491566 abstract "The utilization of Rényi Transfer Entropy (RTE) as a powerful model for analyzing causal relationships among variables has become pervasive in the field of complex systems time series causality detection. However, there are two major challenges in using RTE: the inherent multilevel structure of causal associations in the systems, and the precision in RTE estimation. To address these challenges, this paper proposes an adaptive multi-scale Rényi transfer entropy based on kernel density estimation. The framework of causal detection based on the novel RTE consists of two parts: adaptive discrete wavelet transform (ADWT)-based time series decomposition and multivariate kernel density estimation (MKDE)-based causality network generation. In the ADWT-based time series decomposition, the original series are decomposed into different frequency bands by optimal wavelet coefficients, which is generated adaptively by an auto-encoder. In the MKDE-based causality network generation, the causal network between the variables is represented by an adjacency matrix composed of their decomposition components in each layer, and the values of the matrix are the RTE values between the variables. In order to accurate estimation of RTE values an evaluation criterion for KDE under a uniform measure in both univariate and multivariate cases and the optimal bandwidth selection is provided in this part. To validate the effectiveness of the novel causal measure in this paper, the proposed method is tested on the synthetic and real data, and the results show that it can effectively detect causal relationships among variables at different levels in non-stationary time series of both bidirectional and undirectional complex systems. Compared to the other RTE estimators, the proposed method can detect the causality accurately and avoid the spurious causality." @default.
- W4386491566 created "2023-09-07" @default.
- W4386491566 creator A5013308588 @default.
- W4386491566 creator A5027311139 @default.
- W4386491566 creator A5029524216 @default.
- W4386491566 creator A5030791357 @default.
- W4386491566 creator A5044742458 @default.
- W4386491566 creator A5046495862 @default.
- W4386491566 date "2023-10-01" @default.
- W4386491566 modified "2023-10-02" @default.
- W4386491566 title "A novel adaptive multi-scale Rényi transfer entropy based on kernel density estimation" @default.
- W4386491566 cites W1670599640 @default.
- W4386491566 cites W1964569797 @default.
- W4386491566 cites W1966364286 @default.
- W4386491566 cites W2006687001 @default.
- W4386491566 cites W2015666727 @default.
- W4386491566 cites W2024472792 @default.
- W4386491566 cites W2029440305 @default.
- W4386491566 cites W2041782669 @default.
- W4386491566 cites W2061933243 @default.
- W4386491566 cites W2071044018 @default.
- W4386491566 cites W2079656335 @default.
- W4386491566 cites W2092939357 @default.
- W4386491566 cites W2140120387 @default.
- W4386491566 cites W2140991832 @default.
- W4386491566 cites W2143117649 @default.
- W4386491566 cites W2147692400 @default.
- W4386491566 cites W2323767983 @default.
- W4386491566 cites W2462099493 @default.
- W4386491566 cites W2607854259 @default.
- W4386491566 cites W2798093494 @default.
- W4386491566 cites W2888337213 @default.
- W4386491566 cites W2962783375 @default.
- W4386491566 cites W2989789496 @default.
- W4386491566 cites W3088792554 @default.
- W4386491566 cites W3121758033 @default.
- W4386491566 cites W3124730517 @default.
- W4386491566 cites W3159919908 @default.
- W4386491566 cites W3195546373 @default.
- W4386491566 cites W4283527982 @default.
- W4386491566 cites W4284989250 @default.
- W4386491566 cites W4296177989 @default.
- W4386491566 cites W4317754153 @default.
- W4386491566 doi "https://doi.org/10.1016/j.chaos.2023.113972" @default.
- W4386491566 hasPublicationYear "2023" @default.
- W4386491566 type Work @default.
- W4386491566 citedByCount "0" @default.
- W4386491566 crossrefType "journal-article" @default.
- W4386491566 hasAuthorship W4386491566A5013308588 @default.
- W4386491566 hasAuthorship W4386491566A5027311139 @default.
- W4386491566 hasAuthorship W4386491566A5029524216 @default.
- W4386491566 hasAuthorship W4386491566A5030791357 @default.
- W4386491566 hasAuthorship W4386491566A5044742458 @default.
- W4386491566 hasAuthorship W4386491566A5046495862 @default.
- W4386491566 hasConcept C105795698 @default.
- W4386491566 hasConcept C106301342 @default.
- W4386491566 hasConcept C11413529 @default.
- W4386491566 hasConcept C119857082 @default.
- W4386491566 hasConcept C121332964 @default.
- W4386491566 hasConcept C124101348 @default.
- W4386491566 hasConcept C153180895 @default.
- W4386491566 hasConcept C154945302 @default.
- W4386491566 hasConcept C161584116 @default.
- W4386491566 hasConcept C182049051 @default.
- W4386491566 hasConcept C185429906 @default.
- W4386491566 hasConcept C189508267 @default.
- W4386491566 hasConcept C199163554 @default.
- W4386491566 hasConcept C33923547 @default.
- W4386491566 hasConcept C41008148 @default.
- W4386491566 hasConcept C62520636 @default.
- W4386491566 hasConcept C71134354 @default.
- W4386491566 hasConcept C95546049 @default.
- W4386491566 hasConcept C9679016 @default.
- W4386491566 hasConceptScore W4386491566C105795698 @default.
- W4386491566 hasConceptScore W4386491566C106301342 @default.
- W4386491566 hasConceptScore W4386491566C11413529 @default.
- W4386491566 hasConceptScore W4386491566C119857082 @default.
- W4386491566 hasConceptScore W4386491566C121332964 @default.
- W4386491566 hasConceptScore W4386491566C124101348 @default.
- W4386491566 hasConceptScore W4386491566C153180895 @default.
- W4386491566 hasConceptScore W4386491566C154945302 @default.
- W4386491566 hasConceptScore W4386491566C161584116 @default.
- W4386491566 hasConceptScore W4386491566C182049051 @default.
- W4386491566 hasConceptScore W4386491566C185429906 @default.
- W4386491566 hasConceptScore W4386491566C189508267 @default.
- W4386491566 hasConceptScore W4386491566C199163554 @default.
- W4386491566 hasConceptScore W4386491566C33923547 @default.
- W4386491566 hasConceptScore W4386491566C41008148 @default.
- W4386491566 hasConceptScore W4386491566C62520636 @default.
- W4386491566 hasConceptScore W4386491566C71134354 @default.
- W4386491566 hasConceptScore W4386491566C95546049 @default.
- W4386491566 hasConceptScore W4386491566C9679016 @default.
- W4386491566 hasFunder F4320321001 @default.
- W4386491566 hasFunder F4320335777 @default.
- W4386491566 hasLocation W43864915661 @default.
- W4386491566 hasOpenAccess W4386491566 @default.
- W4386491566 hasPrimaryLocation W43864915661 @default.
- W4386491566 hasRelatedWork W1482762218 @default.