Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386492854> ?p ?o ?g. }
- W4386492854 endingPage "2867" @default.
- W4386492854 startingPage "2867" @default.
- W4386492854 abstract "Arrhythmia is a cardiac condition characterized by an irregular heart rhythm that hinders the proper circulation of blood, posing a severe risk to individuals’ lives. Globally, arrhythmias are recognized as a significant health concern, accounting for nearly 12 percent of all deaths. As a result, there has been a growing focus on utilizing artificial intelligence for the detection and classification of abnormal heartbeats. In recent years, self-operated heartbeat detection research has gained popularity due to its cost-effectiveness and potential for expediting therapy for individuals at risk of arrhythmias. However, building an efficient automatic heartbeat monitoring approach for arrhythmia identification and classification comes with several significant challenges. These challenges include addressing issues related to data quality, determining the range for heart rate segmentation, managing data imbalance difficulties, handling intra- and inter-patient variations, distinguishing supraventricular irregular heartbeats from regular heartbeats, and ensuring model interpretability. In this study, we propose the Reseek-Arrhythmia model, which leverages deep learning techniques to automatically detect and classify heart arrhythmia diseases. The model combines different convolutional blocks and identity blocks, along with essential components such as convolution layers, batch normalization layers, and activation layers. To train and evaluate the model, we utilized the MIT-BIH and PTB datasets. Remarkably, the proposed model achieves outstanding performance with an accuracy of 99.35% and 93.50% and an acceptable loss of 0.688 and 0.2564, respectively." @default.
- W4386492854 created "2023-09-07" @default.
- W4386492854 creator A5003091988 @default.
- W4386492854 creator A5013195176 @default.
- W4386492854 creator A5016051364 @default.
- W4386492854 creator A5021704158 @default.
- W4386492854 creator A5068782746 @default.
- W4386492854 creator A5069205023 @default.
- W4386492854 creator A5080581779 @default.
- W4386492854 creator A5083574365 @default.
- W4386492854 creator A5087814995 @default.
- W4386492854 date "2023-09-06" @default.
- W4386492854 modified "2023-10-14" @default.
- W4386492854 title "Reseek-Arrhythmia: Empirical Evaluation of ResNet Architecture for Detection of Arrhythmia" @default.
- W4386492854 cites W1485684273 @default.
- W4386492854 cites W2045867791 @default.
- W4386492854 cites W2047181473 @default.
- W4386492854 cites W2052396587 @default.
- W4386492854 cites W2063923412 @default.
- W4386492854 cites W2137619570 @default.
- W4386492854 cites W2211945929 @default.
- W4386492854 cites W2333414777 @default.
- W4386492854 cites W2341437899 @default.
- W4386492854 cites W2612184698 @default.
- W4386492854 cites W2771170013 @default.
- W4386492854 cites W2946992136 @default.
- W4386492854 cites W2949452841 @default.
- W4386492854 cites W2963668841 @default.
- W4386492854 cites W2977638463 @default.
- W4386492854 cites W2990816939 @default.
- W4386492854 cites W3001719400 @default.
- W4386492854 cites W3008167346 @default.
- W4386492854 cites W3017644243 @default.
- W4386492854 cites W3023757337 @default.
- W4386492854 cites W3036776350 @default.
- W4386492854 cites W3037971783 @default.
- W4386492854 cites W3048700923 @default.
- W4386492854 cites W3171626192 @default.
- W4386492854 cites W3173656828 @default.
- W4386492854 cites W3173947869 @default.
- W4386492854 cites W3186233728 @default.
- W4386492854 cites W3205360679 @default.
- W4386492854 cites W3211201659 @default.
- W4386492854 cites W3211616152 @default.
- W4386492854 cites W4220915881 @default.
- W4386492854 cites W4224316937 @default.
- W4386492854 cites W4280532874 @default.
- W4386492854 cites W4296526952 @default.
- W4386492854 cites W4303650086 @default.
- W4386492854 cites W4308333983 @default.
- W4386492854 doi "https://doi.org/10.3390/diagnostics13182867" @default.
- W4386492854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37761234" @default.
- W4386492854 hasPublicationYear "2023" @default.
- W4386492854 type Work @default.
- W4386492854 citedByCount "0" @default.
- W4386492854 crossrefType "journal-article" @default.
- W4386492854 hasAuthorship W4386492854A5003091988 @default.
- W4386492854 hasAuthorship W4386492854A5013195176 @default.
- W4386492854 hasAuthorship W4386492854A5016051364 @default.
- W4386492854 hasAuthorship W4386492854A5021704158 @default.
- W4386492854 hasAuthorship W4386492854A5068782746 @default.
- W4386492854 hasAuthorship W4386492854A5069205023 @default.
- W4386492854 hasAuthorship W4386492854A5080581779 @default.
- W4386492854 hasAuthorship W4386492854A5083574365 @default.
- W4386492854 hasAuthorship W4386492854A5087814995 @default.
- W4386492854 hasBestOaLocation W43864928541 @default.
- W4386492854 hasConcept C108583219 @default.
- W4386492854 hasConcept C119857082 @default.
- W4386492854 hasConcept C127413603 @default.
- W4386492854 hasConcept C134448949 @default.
- W4386492854 hasConcept C13852961 @default.
- W4386492854 hasConcept C153180895 @default.
- W4386492854 hasConcept C154945302 @default.
- W4386492854 hasConcept C164705383 @default.
- W4386492854 hasConcept C201995342 @default.
- W4386492854 hasConcept C2779161974 @default.
- W4386492854 hasConcept C2781067378 @default.
- W4386492854 hasConcept C2910597771 @default.
- W4386492854 hasConcept C2988455589 @default.
- W4386492854 hasConcept C38652104 @default.
- W4386492854 hasConcept C41008148 @default.
- W4386492854 hasConcept C71924100 @default.
- W4386492854 hasConceptScore W4386492854C108583219 @default.
- W4386492854 hasConceptScore W4386492854C119857082 @default.
- W4386492854 hasConceptScore W4386492854C127413603 @default.
- W4386492854 hasConceptScore W4386492854C134448949 @default.
- W4386492854 hasConceptScore W4386492854C13852961 @default.
- W4386492854 hasConceptScore W4386492854C153180895 @default.
- W4386492854 hasConceptScore W4386492854C154945302 @default.
- W4386492854 hasConceptScore W4386492854C164705383 @default.
- W4386492854 hasConceptScore W4386492854C201995342 @default.
- W4386492854 hasConceptScore W4386492854C2779161974 @default.
- W4386492854 hasConceptScore W4386492854C2781067378 @default.
- W4386492854 hasConceptScore W4386492854C2910597771 @default.
- W4386492854 hasConceptScore W4386492854C2988455589 @default.
- W4386492854 hasConceptScore W4386492854C38652104 @default.
- W4386492854 hasConceptScore W4386492854C41008148 @default.
- W4386492854 hasConceptScore W4386492854C71924100 @default.