Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386494967> ?p ?o ?g. }
- W4386494967 abstract "Introduction Magnetic Resonance Imaging (MRI) is a promising alternative to standard x-ray fluoroscopy for the guidance of cardiac catheterization procedures as it enables soft tissue visualization, avoids ionizing radiation and provides improved hemodynamic data. MRI-guided cardiac catheterization procedures currently require frequent manual tracking of the imaging plane during navigation to follow the tip of a gadolinium-filled balloon wedge catheter, which unnecessarily prolongs and complicates the procedures. Therefore, real-time automatic image-based detection of the catheter balloon has the potential to improve catheter visualization and navigation through automatic slice tracking. Methods In this study, an automatic, parameter-free, deep-learning-based post-processing pipeline was developed for real-time detection of the catheter balloon. A U-Net architecture with a ResNet-34 encoder was trained on semi-artificial images for the segmentation of the catheter balloon. Post-processing steps were implemented to guarantee a unique estimate of the catheter tip coordinates. This approach was evaluated retrospectively in 7 patients (6M and 1F, age = 7 ± 5 year) who underwent an MRI-guided right heart catheterization procedure with all images acquired in an orientation unseen during training. Results The overall accuracy, specificity and sensitivity of the proposed catheter tracking strategy over all 7 patients were 98.4 ± 2.0%, 99.9 ± 0.2% and 95.4 ± 5.5%, respectively. The computation time of the deep-learning-based segmentation step was ∼10 ms/image, indicating its compatibility with real-time constraints. Conclusion Deep-learning-based catheter balloon tracking is feasible, accurate, parameter-free, and compatible with real-time conditions. Online integration of the technique and its evaluation in a larger patient cohort are now warranted to determine its benefit during MRI-guided cardiac catheterization." @default.
- W4386494967 created "2023-09-07" @default.
- W4386494967 creator A5000813308 @default.
- W4386494967 creator A5002124380 @default.
- W4386494967 creator A5005221149 @default.
- W4386494967 creator A5012947499 @default.
- W4386494967 creator A5015356150 @default.
- W4386494967 creator A5063988593 @default.
- W4386494967 creator A5064308224 @default.
- W4386494967 creator A5089294080 @default.
- W4386494967 creator A5089568660 @default.
- W4386494967 creator A5092591304 @default.
- W4386494967 date "2023-09-07" @default.
- W4386494967 modified "2023-09-27" @default.
- W4386494967 title "Automatic image-based tracking of gadolinium-filled balloon wedge catheters for MRI-guided cardiac catheterization using deep learning" @default.
- W4386494967 cites W1965903585 @default.
- W4386494967 cites W1992996351 @default.
- W4386494967 cites W2096957153 @default.
- W4386494967 cites W2097117768 @default.
- W4386494967 cites W2102349080 @default.
- W4386494967 cites W2116009760 @default.
- W4386494967 cites W2135694890 @default.
- W4386494967 cites W2139211710 @default.
- W4386494967 cites W2164079755 @default.
- W4386494967 cites W2734349601 @default.
- W4386494967 cites W2739602263 @default.
- W4386494967 cites W2743884031 @default.
- W4386494967 cites W2752782242 @default.
- W4386494967 cites W2954203073 @default.
- W4386494967 cites W2972083746 @default.
- W4386494967 cites W3006982732 @default.
- W4386494967 cites W3011743383 @default.
- W4386494967 cites W3011750456 @default.
- W4386494967 cites W3014304846 @default.
- W4386494967 cites W3033776559 @default.
- W4386494967 cites W3096697990 @default.
- W4386494967 cites W3096947210 @default.
- W4386494967 cites W3186516682 @default.
- W4386494967 cites W4210242959 @default.
- W4386494967 cites W4213368287 @default.
- W4386494967 cites W4214911531 @default.
- W4386494967 cites W4221129049 @default.
- W4386494967 cites W4281801350 @default.
- W4386494967 cites W4293576430 @default.
- W4386494967 cites W4306843898 @default.
- W4386494967 cites W4386523627 @default.
- W4386494967 doi "https://doi.org/10.3389/fcvm.2023.1233093" @default.
- W4386494967 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37745095" @default.
- W4386494967 hasPublicationYear "2023" @default.
- W4386494967 type Work @default.
- W4386494967 citedByCount "0" @default.
- W4386494967 crossrefType "journal-article" @default.
- W4386494967 hasAuthorship W4386494967A5000813308 @default.
- W4386494967 hasAuthorship W4386494967A5002124380 @default.
- W4386494967 hasAuthorship W4386494967A5005221149 @default.
- W4386494967 hasAuthorship W4386494967A5012947499 @default.
- W4386494967 hasAuthorship W4386494967A5015356150 @default.
- W4386494967 hasAuthorship W4386494967A5063988593 @default.
- W4386494967 hasAuthorship W4386494967A5064308224 @default.
- W4386494967 hasAuthorship W4386494967A5089294080 @default.
- W4386494967 hasAuthorship W4386494967A5089568660 @default.
- W4386494967 hasAuthorship W4386494967A5092591304 @default.
- W4386494967 hasBestOaLocation W43864949671 @default.
- W4386494967 hasConcept C108583219 @default.
- W4386494967 hasConcept C126838900 @default.
- W4386494967 hasConcept C139059822 @default.
- W4386494967 hasConcept C141071460 @default.
- W4386494967 hasConcept C143409427 @default.
- W4386494967 hasConcept C154945302 @default.
- W4386494967 hasConcept C2776805002 @default.
- W4386494967 hasConcept C2777385415 @default.
- W4386494967 hasConcept C2781267111 @default.
- W4386494967 hasConcept C2993470428 @default.
- W4386494967 hasConcept C31972630 @default.
- W4386494967 hasConcept C41008148 @default.
- W4386494967 hasConcept C71924100 @default.
- W4386494967 hasConcept C89600930 @default.
- W4386494967 hasConceptScore W4386494967C108583219 @default.
- W4386494967 hasConceptScore W4386494967C126838900 @default.
- W4386494967 hasConceptScore W4386494967C139059822 @default.
- W4386494967 hasConceptScore W4386494967C141071460 @default.
- W4386494967 hasConceptScore W4386494967C143409427 @default.
- W4386494967 hasConceptScore W4386494967C154945302 @default.
- W4386494967 hasConceptScore W4386494967C2776805002 @default.
- W4386494967 hasConceptScore W4386494967C2777385415 @default.
- W4386494967 hasConceptScore W4386494967C2781267111 @default.
- W4386494967 hasConceptScore W4386494967C2993470428 @default.
- W4386494967 hasConceptScore W4386494967C31972630 @default.
- W4386494967 hasConceptScore W4386494967C41008148 @default.
- W4386494967 hasConceptScore W4386494967C71924100 @default.
- W4386494967 hasConceptScore W4386494967C89600930 @default.
- W4386494967 hasLocation W43864949671 @default.
- W4386494967 hasLocation W43864949672 @default.
- W4386494967 hasOpenAccess W4386494967 @default.
- W4386494967 hasPrimaryLocation W43864949671 @default.
- W4386494967 hasRelatedWork W142964247 @default.
- W4386494967 hasRelatedWork W1965263607 @default.
- W4386494967 hasRelatedWork W2005662636 @default.
- W4386494967 hasRelatedWork W2008874604 @default.
- W4386494967 hasRelatedWork W2073360874 @default.