Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386495110> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4386495110 abstract "ABSTRACT Analysis of borehole wall failures, breakouts, is the primary method of constraining the maximum horizontal stress in deep wells. To estimate stress using the breakout method, one needs to measure the breakout width from image or caliper logs, and use a failure theory to predict stress that led to the development of the measured breakout. Most commonly, Mohr-Coulomb failure criterion is used which disregards the influence of intermediate stress on strength. Different polyaxial criteria have been proposed to include this effect. Here, we first review selected polyaxial criteria: Drucker-Prager, Mogi and modified Wiebols-Cook, and we conclude that their application in breakout analysis is cumbersome and often unreliable. One reason for these problems is that the criteria are defined using octahedral stresses or invariants, while the breakout analysis is most easily done in the principal stress space. Therefore, the polyaxial criterion can be defined as a simple relation between maximum and intermediate stresses. We propose to define such an empirical criterion as a second order polynomial which fits trends observed in polyaxial laboratory strength data. INTRODUCTION Knowledge of in situ stress is essential for many geological engineering applications including: borehole stability, hydraulic stimulation, induced seismicity, and others (e.g. Zoback, 1992, 2007; Jaeger et al., 2007; Heidbach et al., 2018). Among the three principal stresses, the maximum horizontal stress (σH) is the most challenging to constrain (Zoback et al., 2003). The most commonly used method is based on analysis of borehole wall compressive failures, i.e. breakouts. Breakout analysis requires two components: i) the breakout geometry observed from image or caliper logs, and ii) a failure theory to predict stress that led to the development of a breakout with the measured geometry. Most commonly, the Mohr-Coulomb criterion is used in borehole wall strength analysis and its failure is predicted when the hoop stress reaches a critical value (Barton et al., 1988). However, such approach disregards the influence of the intermediate principal stress (σ2) on rock strength (understood as the maximum principal stress, σ1, at failure) which has been described in numerous experimental studies (e.g. Mogi, 1971; Michelis, 1985, 1987; Haimson and Chang, 2000; Chang and Haimson, 2000; Ingraham et al., 2013; Ma and Haimson, 2016; Lee and Haimson, 2011). Therefore, several polyaxial failure criteria which include the σ2 dependence of strength has been proposed and applied in borehole breakout analyses (Zhou, 1994; Ewy, 1999; Al-Ajmi and Zimmerman, 2005; Chang et al., 2010)." @default.
- W4386495110 created "2023-09-07" @default.
- W4386495110 creator A5047489893 @default.
- W4386495110 creator A5072785004 @default.
- W4386495110 date "2023-06-25" @default.
- W4386495110 modified "2023-10-16" @default.
- W4386495110 title "Polyaxial Failure Criteria in Borehole Breakout Stress Analysis" @default.
- W4386495110 doi "https://doi.org/10.56952/arma-2023-0074" @default.
- W4386495110 hasPublicationYear "2023" @default.
- W4386495110 type Work @default.
- W4386495110 citedByCount "0" @default.
- W4386495110 crossrefType "proceedings-article" @default.
- W4386495110 hasAuthorship W4386495110A5047489893 @default.
- W4386495110 hasAuthorship W4386495110A5072785004 @default.
- W4386495110 hasConcept C10138342 @default.
- W4386495110 hasConcept C127313418 @default.
- W4386495110 hasConcept C127413603 @default.
- W4386495110 hasConcept C138885662 @default.
- W4386495110 hasConcept C150560799 @default.
- W4386495110 hasConcept C162324750 @default.
- W4386495110 hasConcept C187320778 @default.
- W4386495110 hasConcept C21036866 @default.
- W4386495110 hasConcept C2778091849 @default.
- W4386495110 hasConcept C41895202 @default.
- W4386495110 hasConcept C66938386 @default.
- W4386495110 hasConceptScore W4386495110C10138342 @default.
- W4386495110 hasConceptScore W4386495110C127313418 @default.
- W4386495110 hasConceptScore W4386495110C127413603 @default.
- W4386495110 hasConceptScore W4386495110C138885662 @default.
- W4386495110 hasConceptScore W4386495110C150560799 @default.
- W4386495110 hasConceptScore W4386495110C162324750 @default.
- W4386495110 hasConceptScore W4386495110C187320778 @default.
- W4386495110 hasConceptScore W4386495110C21036866 @default.
- W4386495110 hasConceptScore W4386495110C2778091849 @default.
- W4386495110 hasConceptScore W4386495110C41895202 @default.
- W4386495110 hasConceptScore W4386495110C66938386 @default.
- W4386495110 hasLocation W43864951101 @default.
- W4386495110 hasOpenAccess W4386495110 @default.
- W4386495110 hasPrimaryLocation W43864951101 @default.
- W4386495110 hasRelatedWork W1989984952 @default.
- W4386495110 hasRelatedWork W2129841676 @default.
- W4386495110 hasRelatedWork W2167399570 @default.
- W4386495110 hasRelatedWork W2189167195 @default.
- W4386495110 hasRelatedWork W2363562331 @default.
- W4386495110 hasRelatedWork W2515435281 @default.
- W4386495110 hasRelatedWork W3002610800 @default.
- W4386495110 hasRelatedWork W3031191610 @default.
- W4386495110 hasRelatedWork W4297349154 @default.
- W4386495110 hasRelatedWork W4310359903 @default.
- W4386495110 isParatext "false" @default.
- W4386495110 isRetracted "false" @default.
- W4386495110 workType "article" @default.