Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386496250> ?p ?o ?g. }
- W4386496250 abstract "Abstract Discrete data such as counts of microbiome taxa resulting from next-generation sequencing are routinely encountered in bioinformatics. Taxa count data in microbiome studies are typically high-dimensional, over-dispersed, and can only reveal relative abundance therefore being treated as compositional. Analyzing compositional data presents many challenges because they are restricted to a simplex. In a logistic normal multinomial model, the relative abundance is mapped from a simplex to a latent variable that exists on the real Euclidean space using the additive log-ratio transformation. While a logistic normal multinomial approach brings flexibility for modeling the data, it comes with a heavy computational cost as the parameter estimation typically relies on Bayesian techniques. In this paper, we develop a novel mixture of logistic normal multinomial models for clustering microbiome data. Additionally, we utilize an efficient framework for parameter estimation using variational Gaussian approximations (VGA). Adopting a variational Gaussian approximation for the posterior of the latent variable reduces the computational overhead substantially. The proposed method is illustrated on simulated and real datasets." @default.
- W4386496250 created "2023-09-07" @default.
- W4386496250 creator A5001026225 @default.
- W4386496250 creator A5076277565 @default.
- W4386496250 date "2023-09-07" @default.
- W4386496250 modified "2023-09-29" @default.
- W4386496250 title "Clustering microbiome data using mixtures of logistic normal multinomial models" @default.
- W4386496250 cites W1503352355 @default.
- W4386496250 cites W1977556410 @default.
- W4386496250 cites W1985197139 @default.
- W4386496250 cites W1991669423 @default.
- W4386496250 cites W2011084061 @default.
- W4386496250 cites W2015286907 @default.
- W4386496250 cites W2021137021 @default.
- W4386496250 cites W2026006003 @default.
- W4386496250 cites W2050442785 @default.
- W4386496250 cites W2051322058 @default.
- W4386496250 cites W2053801811 @default.
- W4386496250 cites W2071841602 @default.
- W4386496250 cites W2078599166 @default.
- W4386496250 cites W2088209062 @default.
- W4386496250 cites W2090925778 @default.
- W4386496250 cites W2102813808 @default.
- W4386496250 cites W2110846454 @default.
- W4386496250 cites W2112697101 @default.
- W4386496250 cites W2126218947 @default.
- W4386496250 cites W2128769815 @default.
- W4386496250 cites W2149573313 @default.
- W4386496250 cites W2150230417 @default.
- W4386496250 cites W2152904625 @default.
- W4386496250 cites W2156975150 @default.
- W4386496250 cites W2162088497 @default.
- W4386496250 cites W2163903604 @default.
- W4386496250 cites W2168175751 @default.
- W4386496250 cites W2168980979 @default.
- W4386496250 cites W2169330513 @default.
- W4386496250 cites W2272266927 @default.
- W4386496250 cites W2461082701 @default.
- W4386496250 cites W2488678869 @default.
- W4386496250 cites W2524681876 @default.
- W4386496250 cites W2567421046 @default.
- W4386496250 cites W2587304885 @default.
- W4386496250 cites W2754322148 @default.
- W4386496250 cites W2754579667 @default.
- W4386496250 cites W2782447462 @default.
- W4386496250 cites W2798633897 @default.
- W4386496250 cites W2845130796 @default.
- W4386496250 cites W2883542968 @default.
- W4386496250 cites W2952200190 @default.
- W4386496250 cites W2952314958 @default.
- W4386496250 cites W2962914532 @default.
- W4386496250 cites W2980874176 @default.
- W4386496250 cites W3000337788 @default.
- W4386496250 cites W3016087356 @default.
- W4386496250 cites W3098806227 @default.
- W4386496250 cites W3101380508 @default.
- W4386496250 cites W4221116063 @default.
- W4386496250 cites W4235169531 @default.
- W4386496250 cites W4293052541 @default.
- W4386496250 cites W755741475 @default.
- W4386496250 doi "https://doi.org/10.1038/s41598-023-41318-8" @default.
- W4386496250 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37679485" @default.
- W4386496250 hasPublicationYear "2023" @default.
- W4386496250 type Work @default.
- W4386496250 citedByCount "0" @default.
- W4386496250 crossrefType "journal-article" @default.
- W4386496250 hasAuthorship W4386496250A5001026225 @default.
- W4386496250 hasAuthorship W4386496250A5076277565 @default.
- W4386496250 hasBestOaLocation W43864962501 @default.
- W4386496250 hasConcept C100906024 @default.
- W4386496250 hasConcept C105795698 @default.
- W4386496250 hasConcept C107673813 @default.
- W4386496250 hasConcept C117568660 @default.
- W4386496250 hasConcept C119857082 @default.
- W4386496250 hasConcept C124101348 @default.
- W4386496250 hasConcept C143121216 @default.
- W4386496250 hasConcept C154945302 @default.
- W4386496250 hasConcept C192065140 @default.
- W4386496250 hasConcept C2524010 @default.
- W4386496250 hasConcept C33643355 @default.
- W4386496250 hasConcept C33923547 @default.
- W4386496250 hasConcept C41008148 @default.
- W4386496250 hasConcept C51167844 @default.
- W4386496250 hasConcept C60644358 @default.
- W4386496250 hasConcept C61224824 @default.
- W4386496250 hasConcept C62438384 @default.
- W4386496250 hasConcept C73555534 @default.
- W4386496250 hasConcept C86803240 @default.
- W4386496250 hasConceptScore W4386496250C100906024 @default.
- W4386496250 hasConceptScore W4386496250C105795698 @default.
- W4386496250 hasConceptScore W4386496250C107673813 @default.
- W4386496250 hasConceptScore W4386496250C117568660 @default.
- W4386496250 hasConceptScore W4386496250C119857082 @default.
- W4386496250 hasConceptScore W4386496250C124101348 @default.
- W4386496250 hasConceptScore W4386496250C143121216 @default.
- W4386496250 hasConceptScore W4386496250C154945302 @default.
- W4386496250 hasConceptScore W4386496250C192065140 @default.
- W4386496250 hasConceptScore W4386496250C2524010 @default.
- W4386496250 hasConceptScore W4386496250C33643355 @default.
- W4386496250 hasConceptScore W4386496250C33923547 @default.