Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386496571> ?p ?o ?g. }
- W4386496571 endingPage "3190" @default.
- W4386496571 startingPage "3190" @default.
- W4386496571 abstract "The magnitude of tidal energy depends on changes in ocean water levels, and by accurately predicting water level changes, tidal power plants can be effectively helped to plan and optimize the timing of power generation to maximize energy harvesting efficiency. The time-dependent nature of water level changes results in water level data being of the time-series type and is essential for both short- and long-term forecasting. Real-time water level information is essential for studying tidal power, and the National Oceanic and Atmospheric Administration (NOAA) has real-time water level information, making the NOAA data useful for such studies. In this paper, long short-term memory (LSTM) and its variants, stack long short-term memory (StackLSTM) and bi-directional long short-term memory (BiLSTM), are used to predict water levels at three sites and compared with classical machine learning algorithms, e.g., support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM). This study aims to investigate the effects of wind speed (WS), wind direction (WD), gusts (WG), air temperature (AT), and atmospheric pressure (Baro) on predicting hourly water levels (WL). The results show that the highest coefficient of determination (R2) was obtained at all meteorological factors when used as inputs, except at the La Jolla site. (Burlington station (R2) = 0.721, Kahului station (R2) = 0.852). In the final part of this article, the complete ensemble empirical mode decomposition adaptive noise (CEEMDAN) algorithm was introduced into various models, and the results showed a significant improvement in predicting water levels at each site. Among them, the CEEMDAN-BiLSTM algorithm performed the best, with an average RMSE of 0.0759 mh−1 for the prediction of three sites. This indicates that applying the CEEMDAN algorithm to deep learning has a more stable predictive performance for water level forecasting in different regions." @default.
- W4386496571 created "2023-09-07" @default.
- W4386496571 creator A5001348758 @default.
- W4386496571 creator A5042259416 @default.
- W4386496571 creator A5078954046 @default.
- W4386496571 date "2023-09-07" @default.
- W4386496571 modified "2023-10-16" @default.
- W4386496571 title "Exploring the Effect of Meteorological Factors on Predicting Hourly Water Levels Based on CEEMDAN and LSTM" @default.
- W4386496571 cites W1596717185 @default.
- W4386496571 cites W1749887058 @default.
- W4386496571 cites W1964940342 @default.
- W4386496571 cites W1986078433 @default.
- W4386496571 cites W2008855189 @default.
- W4386496571 cites W2025651937 @default.
- W4386496571 cites W2031292142 @default.
- W4386496571 cites W2033853870 @default.
- W4386496571 cites W2034853047 @default.
- W4386496571 cites W2064675550 @default.
- W4386496571 cites W2125056386 @default.
- W4386496571 cites W2128084896 @default.
- W4386496571 cites W2131774270 @default.
- W4386496571 cites W2134036914 @default.
- W4386496571 cites W2136848157 @default.
- W4386496571 cites W2155096269 @default.
- W4386496571 cites W2177542211 @default.
- W4386496571 cites W2186733009 @default.
- W4386496571 cites W2316628747 @default.
- W4386496571 cites W2510289107 @default.
- W4386496571 cites W2556969042 @default.
- W4386496571 cites W2592435569 @default.
- W4386496571 cites W2765123639 @default.
- W4386496571 cites W2803881474 @default.
- W4386496571 cites W2889246260 @default.
- W4386496571 cites W2911964244 @default.
- W4386496571 cites W2919115771 @default.
- W4386496571 cites W2950389803 @default.
- W4386496571 cites W2962902328 @default.
- W4386496571 cites W2997624500 @default.
- W4386496571 cites W3006101764 @default.
- W4386496571 cites W3013533105 @default.
- W4386496571 cites W3034143844 @default.
- W4386496571 cites W3034669513 @default.
- W4386496571 cites W3102476541 @default.
- W4386496571 cites W3110015110 @default.
- W4386496571 cites W3155739706 @default.
- W4386496571 cites W3168783671 @default.
- W4386496571 cites W3183489846 @default.
- W4386496571 cites W4210955934 @default.
- W4386496571 cites W4213272346 @default.
- W4386496571 cites W4239510810 @default.
- W4386496571 cites W4282562838 @default.
- W4386496571 cites W4283368966 @default.
- W4386496571 cites W4295814685 @default.
- W4386496571 cites W4296017688 @default.
- W4386496571 cites W4383264647 @default.
- W4386496571 doi "https://doi.org/10.3390/w15183190" @default.
- W4386496571 hasPublicationYear "2023" @default.
- W4386496571 type Work @default.
- W4386496571 citedByCount "0" @default.
- W4386496571 crossrefType "journal-article" @default.
- W4386496571 hasAuthorship W4386496571A5001348758 @default.
- W4386496571 hasAuthorship W4386496571A5042259416 @default.
- W4386496571 hasAuthorship W4386496571A5078954046 @default.
- W4386496571 hasBestOaLocation W43864965711 @default.
- W4386496571 hasConcept C105795698 @default.
- W4386496571 hasConcept C119857082 @default.
- W4386496571 hasConcept C121332964 @default.
- W4386496571 hasConcept C12267149 @default.
- W4386496571 hasConcept C153294291 @default.
- W4386496571 hasConcept C161067210 @default.
- W4386496571 hasConcept C169258074 @default.
- W4386496571 hasConcept C186370098 @default.
- W4386496571 hasConcept C25570617 @default.
- W4386496571 hasConcept C33923547 @default.
- W4386496571 hasConcept C39432304 @default.
- W4386496571 hasConcept C41008148 @default.
- W4386496571 hasConcept C70153297 @default.
- W4386496571 hasConceptScore W4386496571C105795698 @default.
- W4386496571 hasConceptScore W4386496571C119857082 @default.
- W4386496571 hasConceptScore W4386496571C121332964 @default.
- W4386496571 hasConceptScore W4386496571C12267149 @default.
- W4386496571 hasConceptScore W4386496571C153294291 @default.
- W4386496571 hasConceptScore W4386496571C161067210 @default.
- W4386496571 hasConceptScore W4386496571C169258074 @default.
- W4386496571 hasConceptScore W4386496571C186370098 @default.
- W4386496571 hasConceptScore W4386496571C25570617 @default.
- W4386496571 hasConceptScore W4386496571C33923547 @default.
- W4386496571 hasConceptScore W4386496571C39432304 @default.
- W4386496571 hasConceptScore W4386496571C41008148 @default.
- W4386496571 hasConceptScore W4386496571C70153297 @default.
- W4386496571 hasIssue "18" @default.
- W4386496571 hasLocation W43864965711 @default.
- W4386496571 hasOpenAccess W4386496571 @default.
- W4386496571 hasPrimaryLocation W43864965711 @default.
- W4386496571 hasRelatedWork W2985924212 @default.
- W4386496571 hasRelatedWork W3195610867 @default.
- W4386496571 hasRelatedWork W3201348321 @default.
- W4386496571 hasRelatedWork W3208169454 @default.