Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386496604> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4386496604 abstract "Introduction Myoelectric control of prostheses is a long-established technique, using surface electromyography (sEMG) to detect user intention and perform subsequent mechanical actions. Most machine learning models utilized in control systems are trained using isolated movements that do not reflect the natural movements occurring during daily activities. Moreover, movements are often affected by arm postures, the duration of activities, and personal habits. It is crucial to have a control system for multi-degree-of-freedom (DoF) prosthetic arms that is trained using sEMG data collected from activities of daily living (ADL) tasks. Method This work focuses on two major functional wrist movements: pronation-supination and dart-throwing movement (DTM), and introduces a new wrist control system that directly maps sEMG signals to the joint velocities of the multi-DoF wrist. Additionally, a specific training strategy (Quick training) is proposed that enables the controller to be applied to new subjects and handle situations where sensors may displace during daily living, muscles can become fatigued, or sensors can become contaminated (e.g., due to sweat). The prosthetic wrist controller is designed based on data from 24 participants and its performance is evaluated using the Root Mean Square Error (RMSE) and Pearson Correlation. Result The results are found to depend on the characteristics of the tasks. For example, tasks with dart-throwing motion show smaller RSME values (Hammer: 6.68 deg/s and Cup: 7.92 deg/s) compared to tasks with pronation-supination (Bulb: 43.98 deg/s and Screw: 53.64 deg/s). The proposed control technique utilizing Quick training demonstrates a decrease in the average root mean square error (RMSE) value by 35% and an increase in the average Pearson correlation value by 40% across all four ADL tasks." @default.
- W4386496604 created "2023-09-07" @default.
- W4386496604 creator A5035083597 @default.
- W4386496604 creator A5072200429 @default.
- W4386496604 date "2023-09-07" @default.
- W4386496604 modified "2023-10-01" @default.
- W4386496604 title "Continuous joint velocity estimation using CNN-based deep learning for multi-DoF prosthetic wrist for activities of daily living" @default.
- W4386496604 cites W1971702085 @default.
- W4386496604 cites W2019889305 @default.
- W4386496604 cites W2022327534 @default.
- W4386496604 cites W2060749190 @default.
- W4386496604 cites W2122612627 @default.
- W4386496604 cites W2133530044 @default.
- W4386496604 cites W2171188488 @default.
- W4386496604 cites W2181844556 @default.
- W4386496604 cites W2312685931 @default.
- W4386496604 cites W2412908322 @default.
- W4386496604 cites W2472677638 @default.
- W4386496604 cites W2524083015 @default.
- W4386496604 cites W2801921491 @default.
- W4386496604 cites W2893464744 @default.
- W4386496604 cites W2897289199 @default.
- W4386496604 cites W2981877040 @default.
- W4386496604 cites W2991240488 @default.
- W4386496604 cites W2997304337 @default.
- W4386496604 cites W3083891030 @default.
- W4386496604 cites W3163954599 @default.
- W4386496604 cites W3165466478 @default.
- W4386496604 cites W3184838263 @default.
- W4386496604 cites W4200202925 @default.
- W4386496604 cites W4213050190 @default.
- W4386496604 cites W4285102629 @default.
- W4386496604 cites W4312727156 @default.
- W4386496604 cites W4312808111 @default.
- W4386496604 cites W4319777567 @default.
- W4386496604 cites W816501 @default.
- W4386496604 doi "https://doi.org/10.3389/fnbot.2023.1185052" @default.
- W4386496604 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37744085" @default.
- W4386496604 hasPublicationYear "2023" @default.
- W4386496604 type Work @default.
- W4386496604 citedByCount "0" @default.
- W4386496604 crossrefType "journal-article" @default.
- W4386496604 hasAuthorship W4386496604A5035083597 @default.
- W4386496604 hasAuthorship W4386496604A5072200429 @default.
- W4386496604 hasBestOaLocation W43864966041 @default.
- W4386496604 hasConcept C105795698 @default.
- W4386496604 hasConcept C126838900 @default.
- W4386496604 hasConcept C127413603 @default.
- W4386496604 hasConcept C139945424 @default.
- W4386496604 hasConcept C154945302 @default.
- W4386496604 hasConcept C1862650 @default.
- W4386496604 hasConcept C207451115 @default.
- W4386496604 hasConcept C2777515770 @default.
- W4386496604 hasConcept C2778216619 @default.
- W4386496604 hasConcept C31972630 @default.
- W4386496604 hasConcept C33923547 @default.
- W4386496604 hasConcept C41008148 @default.
- W4386496604 hasConcept C44154836 @default.
- W4386496604 hasConcept C71924100 @default.
- W4386496604 hasConcept C78519656 @default.
- W4386496604 hasConcept C79544238 @default.
- W4386496604 hasConcept C99508421 @default.
- W4386496604 hasConceptScore W4386496604C105795698 @default.
- W4386496604 hasConceptScore W4386496604C126838900 @default.
- W4386496604 hasConceptScore W4386496604C127413603 @default.
- W4386496604 hasConceptScore W4386496604C139945424 @default.
- W4386496604 hasConceptScore W4386496604C154945302 @default.
- W4386496604 hasConceptScore W4386496604C1862650 @default.
- W4386496604 hasConceptScore W4386496604C207451115 @default.
- W4386496604 hasConceptScore W4386496604C2777515770 @default.
- W4386496604 hasConceptScore W4386496604C2778216619 @default.
- W4386496604 hasConceptScore W4386496604C31972630 @default.
- W4386496604 hasConceptScore W4386496604C33923547 @default.
- W4386496604 hasConceptScore W4386496604C41008148 @default.
- W4386496604 hasConceptScore W4386496604C44154836 @default.
- W4386496604 hasConceptScore W4386496604C71924100 @default.
- W4386496604 hasConceptScore W4386496604C78519656 @default.
- W4386496604 hasConceptScore W4386496604C79544238 @default.
- W4386496604 hasConceptScore W4386496604C99508421 @default.
- W4386496604 hasLocation W43864966041 @default.
- W4386496604 hasLocation W43864966042 @default.
- W4386496604 hasOpenAccess W4386496604 @default.
- W4386496604 hasPrimaryLocation W43864966041 @default.
- W4386496604 hasRelatedWork W2003655041 @default.
- W4386496604 hasRelatedWork W2013337498 @default.
- W4386496604 hasRelatedWork W2013516130 @default.
- W4386496604 hasRelatedWork W2049836987 @default.
- W4386496604 hasRelatedWork W2126798022 @default.
- W4386496604 hasRelatedWork W2218251576 @default.
- W4386496604 hasRelatedWork W269030820 @default.
- W4386496604 hasRelatedWork W2761463894 @default.
- W4386496604 hasRelatedWork W3009338868 @default.
- W4386496604 hasRelatedWork W3035204648 @default.
- W4386496604 hasVolume "17" @default.
- W4386496604 isParatext "false" @default.
- W4386496604 isRetracted "false" @default.
- W4386496604 workType "article" @default.