Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386497984> ?p ?o ?g. }
- W4386497984 abstract "Problem definition: Restaurant review platforms, such as Yelp and TripAdvisor, routinely receive large numbers of photos in their review submissions. These photos provide significant value for users who seek to compare restaurants. In this context, the choice of cover images (i.e., representative photos of the restaurants) can greatly influence the level of user engagement on the platform. Unfortunately, selecting these images can be time consuming and often requires human intervention. At the same time, it is challenging to develop a systematic approach to assess the effectiveness of the selected images. Methodology/results: In this paper, we collaborate with a large review platform in Asia to investigate this problem. We discuss two image selection approaches, namely crowd-based and artificial intelligence (AI)-based systems. The AI-based system we use learns complex latent image features, which are further enhanced by transfer learning to overcome the scarcity of labeled data. We collaborate with the platform to deploy our AI-based system through a randomized field experiment to carefully compare both systems. We find that the AI-based system outperforms the crowd-based counterpart and boosts user engagement by 12.43%–16.05% on average. We then conduct empirical analyses on observational data to identify the underlying mechanisms that drive the superior performance of the AI-based system. Managerial implications: Finally, we infer from our findings that the AI-based system outperforms the crowd-based system for restaurants with (i) a longer tenure on the platform, (ii) a limited number of user-generated photos, (iii) a lower star rating, and (iv) lower user engagement during the crowd-based system. Funding: The authors acknowledge financial support from the Social Sciences and Humanities Research Council [Grant 430-2020-00106]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.0531 ." @default.
- W4386497984 created "2023-09-07" @default.
- W4386497984 creator A5015555156 @default.
- W4386497984 creator A5023532960 @default.
- W4386497984 creator A5037567541 @default.
- W4386497984 creator A5081248228 @default.
- W4386497984 date "2023-09-07" @default.
- W4386497984 modified "2023-10-16" @default.
- W4386497984 title "Selecting Cover Images for Restaurant Reviews: AI vs. Wisdom of the Crowd" @default.
- W4386497984 cites W1973190657 @default.
- W4386497984 cites W1988245217 @default.
- W4386497984 cites W1988539772 @default.
- W4386497984 cites W2097090480 @default.
- W4386497984 cites W2165698076 @default.
- W4386497984 cites W2327740760 @default.
- W4386497984 cites W2344952903 @default.
- W4386497984 cites W2547348045 @default.
- W4386497984 cites W2727272948 @default.
- W4386497984 cites W2767547957 @default.
- W4386497984 cites W2771588979 @default.
- W4386497984 cites W2802860532 @default.
- W4386497984 cites W2883222886 @default.
- W4386497984 cites W2901389056 @default.
- W4386497984 cites W2905146576 @default.
- W4386497984 cites W2945371699 @default.
- W4386497984 cites W2946466412 @default.
- W4386497984 cites W2952018767 @default.
- W4386497984 cites W2965748866 @default.
- W4386497984 cites W2973930453 @default.
- W4386497984 cites W2994341512 @default.
- W4386497984 cites W2996556610 @default.
- W4386497984 cites W3100404621 @default.
- W4386497984 cites W3103635814 @default.
- W4386497984 cites W3121540823 @default.
- W4386497984 cites W3122327229 @default.
- W4386497984 cites W3123478481 @default.
- W4386497984 cites W3124497955 @default.
- W4386497984 cites W3134954601 @default.
- W4386497984 cites W3186461460 @default.
- W4386497984 cites W3198564028 @default.
- W4386497984 cites W4200180850 @default.
- W4386497984 cites W4200195738 @default.
- W4386497984 cites W4220778874 @default.
- W4386497984 cites W4225700032 @default.
- W4386497984 cites W4241886362 @default.
- W4386497984 cites W4251560691 @default.
- W4386497984 cites W4283730228 @default.
- W4386497984 cites W4285388861 @default.
- W4386497984 cites W4295007572 @default.
- W4386497984 cites W4296963432 @default.
- W4386497984 cites W4298140460 @default.
- W4386497984 cites W4307641351 @default.
- W4386497984 cites W4365814241 @default.
- W4386497984 cites W4366410041 @default.
- W4386497984 cites W4379514326 @default.
- W4386497984 doi "https://doi.org/10.1287/msom.2021.0531" @default.
- W4386497984 hasPublicationYear "2023" @default.
- W4386497984 type Work @default.
- W4386497984 citedByCount "0" @default.
- W4386497984 crossrefType "journal-article" @default.
- W4386497984 hasAuthorship W4386497984A5015555156 @default.
- W4386497984 hasAuthorship W4386497984A5023532960 @default.
- W4386497984 hasAuthorship W4386497984A5037567541 @default.
- W4386497984 hasAuthorship W4386497984A5081248228 @default.
- W4386497984 hasConcept C109747225 @default.
- W4386497984 hasConcept C119857082 @default.
- W4386497984 hasConcept C127413603 @default.
- W4386497984 hasConcept C136764020 @default.
- W4386497984 hasConcept C151730666 @default.
- W4386497984 hasConcept C154945302 @default.
- W4386497984 hasConcept C162324750 @default.
- W4386497984 hasConcept C165696696 @default.
- W4386497984 hasConcept C175444787 @default.
- W4386497984 hasConcept C202444582 @default.
- W4386497984 hasConcept C2522767166 @default.
- W4386497984 hasConcept C2779343474 @default.
- W4386497984 hasConcept C2780428219 @default.
- W4386497984 hasConcept C33923547 @default.
- W4386497984 hasConcept C38652104 @default.
- W4386497984 hasConcept C41008148 @default.
- W4386497984 hasConcept C78519656 @default.
- W4386497984 hasConcept C86803240 @default.
- W4386497984 hasConcept C9652623 @default.
- W4386497984 hasConceptScore W4386497984C109747225 @default.
- W4386497984 hasConceptScore W4386497984C119857082 @default.
- W4386497984 hasConceptScore W4386497984C127413603 @default.
- W4386497984 hasConceptScore W4386497984C136764020 @default.
- W4386497984 hasConceptScore W4386497984C151730666 @default.
- W4386497984 hasConceptScore W4386497984C154945302 @default.
- W4386497984 hasConceptScore W4386497984C162324750 @default.
- W4386497984 hasConceptScore W4386497984C165696696 @default.
- W4386497984 hasConceptScore W4386497984C175444787 @default.
- W4386497984 hasConceptScore W4386497984C202444582 @default.
- W4386497984 hasConceptScore W4386497984C2522767166 @default.
- W4386497984 hasConceptScore W4386497984C2779343474 @default.
- W4386497984 hasConceptScore W4386497984C2780428219 @default.
- W4386497984 hasConceptScore W4386497984C33923547 @default.
- W4386497984 hasConceptScore W4386497984C38652104 @default.
- W4386497984 hasConceptScore W4386497984C41008148 @default.
- W4386497984 hasConceptScore W4386497984C78519656 @default.