Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386499191> ?p ?o ?g. }
- W4386499191 abstract "Abstract Purpose Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancer types globally. Due to the complex anatomy of the region, diagnosis and treatment is challenging. Early diagnosis and treatment are important, because advanced and recurrent HNSCC have a poor prognosis. Robust and precise tools are needed to help diagnose HNSCC reliably in its early stages. The aim of this study was to assess the applicability of a convolutional neural network in detecting and auto-delineating HNSCC from PET-MRI data. Methods 2D U -net models were trained and tested on PET, MRI, PET-MRI and augmented PET-MRI data from 44 patients diagnosed with HNSCC. The scans were taken 12 weeks after chemoradiation therapy with a curative intention. A proportion of the patients had follow-up scans which were included in this study as well, giving a total of 62 PET-MRI scans. The scans yielded a total of 178 PET-MRI slices with cancer. A corresponding number of negative slices were chosen randomly yielding a total of 356 slices. The data was divided into training, validation and test sets ( n = 247, n = 43 and n = 66 respectively). Dice score was used to evaluate the segmentation accuracy. In addition, the classification capabilities of the models were assessed. Results When true positive segmentations were considered, the mean Dice scores for the test set were 0.79, 0.84 and 0.87 for PET, PET-MRI and augmented PET-MRI, respectively. Classification accuracies were 0.62, 0.71 and 0.65 for PET, PET-MRI and augmented PET-MRI, respectively. The MRI based model did not yield segmentation results. A statistically significant difference was found between the PET-MRI and PET models ( p = 0.008). Conclusion Automatic segmentation of HNSCC from the PET-MRI data with 2D U -nets was shown to give sufficiently accurate segmentations." @default.
- W4386499191 created "2023-09-07" @default.
- W4386499191 creator A5011224264 @default.
- W4386499191 creator A5013560431 @default.
- W4386499191 creator A5032454142 @default.
- W4386499191 creator A5040900470 @default.
- W4386499191 creator A5061789520 @default.
- W4386499191 creator A5063909760 @default.
- W4386499191 creator A5084218600 @default.
- W4386499191 creator A5092364020 @default.
- W4386499191 date "2023-09-07" @default.
- W4386499191 modified "2023-10-18" @default.
- W4386499191 title "Automatic Segmentation of Head and Neck Cancer from PET-MRI Data Using Deep Learning" @default.
- W4386499191 cites W1901129140 @default.
- W4386499191 cites W1992070214 @default.
- W4386499191 cites W2041462513 @default.
- W4386499191 cites W2044380336 @default.
- W4386499191 cites W2056327529 @default.
- W4386499191 cites W2088019191 @default.
- W4386499191 cites W2169234727 @default.
- W4386499191 cites W2288651793 @default.
- W4386499191 cites W2313665888 @default.
- W4386499191 cites W2395579298 @default.
- W4386499191 cites W2581082771 @default.
- W4386499191 cites W2618530766 @default.
- W4386499191 cites W2765811365 @default.
- W4386499191 cites W2788633781 @default.
- W4386499191 cites W2898441006 @default.
- W4386499191 cites W2939466230 @default.
- W4386499191 cites W2972640676 @default.
- W4386499191 cites W3126864501 @default.
- W4386499191 cites W3178300374 @default.
- W4386499191 cites W4367172930 @default.
- W4386499191 doi "https://doi.org/10.1007/s40846-023-00818-8" @default.
- W4386499191 hasPublicationYear "2023" @default.
- W4386499191 type Work @default.
- W4386499191 citedByCount "0" @default.
- W4386499191 crossrefType "journal-article" @default.
- W4386499191 hasAuthorship W4386499191A5011224264 @default.
- W4386499191 hasAuthorship W4386499191A5013560431 @default.
- W4386499191 hasAuthorship W4386499191A5032454142 @default.
- W4386499191 hasAuthorship W4386499191A5040900470 @default.
- W4386499191 hasAuthorship W4386499191A5061789520 @default.
- W4386499191 hasAuthorship W4386499191A5063909760 @default.
- W4386499191 hasAuthorship W4386499191A5084218600 @default.
- W4386499191 hasAuthorship W4386499191A5092364020 @default.
- W4386499191 hasBestOaLocation W43864991911 @default.
- W4386499191 hasConcept C121608353 @default.
- W4386499191 hasConcept C126322002 @default.
- W4386499191 hasConcept C126838900 @default.
- W4386499191 hasConcept C141071460 @default.
- W4386499191 hasConcept C154945302 @default.
- W4386499191 hasConcept C22029948 @default.
- W4386499191 hasConcept C2524010 @default.
- W4386499191 hasConcept C2776530083 @default.
- W4386499191 hasConcept C2776833033 @default.
- W4386499191 hasConcept C2989005 @default.
- W4386499191 hasConcept C3018411727 @default.
- W4386499191 hasConcept C33923547 @default.
- W4386499191 hasConcept C41008148 @default.
- W4386499191 hasConcept C509974204 @default.
- W4386499191 hasConcept C71924100 @default.
- W4386499191 hasConcept C81363708 @default.
- W4386499191 hasConcept C89600930 @default.
- W4386499191 hasConceptScore W4386499191C121608353 @default.
- W4386499191 hasConceptScore W4386499191C126322002 @default.
- W4386499191 hasConceptScore W4386499191C126838900 @default.
- W4386499191 hasConceptScore W4386499191C141071460 @default.
- W4386499191 hasConceptScore W4386499191C154945302 @default.
- W4386499191 hasConceptScore W4386499191C22029948 @default.
- W4386499191 hasConceptScore W4386499191C2524010 @default.
- W4386499191 hasConceptScore W4386499191C2776530083 @default.
- W4386499191 hasConceptScore W4386499191C2776833033 @default.
- W4386499191 hasConceptScore W4386499191C2989005 @default.
- W4386499191 hasConceptScore W4386499191C3018411727 @default.
- W4386499191 hasConceptScore W4386499191C33923547 @default.
- W4386499191 hasConceptScore W4386499191C41008148 @default.
- W4386499191 hasConceptScore W4386499191C509974204 @default.
- W4386499191 hasConceptScore W4386499191C71924100 @default.
- W4386499191 hasConceptScore W4386499191C81363708 @default.
- W4386499191 hasConceptScore W4386499191C89600930 @default.
- W4386499191 hasFunder F4320310751 @default.
- W4386499191 hasFunder F4320326591 @default.
- W4386499191 hasFunder F4320327286 @default.
- W4386499191 hasFunder F4320334901 @default.
- W4386499191 hasFunder F4320336789 @default.
- W4386499191 hasLocation W43864991911 @default.
- W4386499191 hasOpenAccess W4386499191 @default.
- W4386499191 hasPrimaryLocation W43864991911 @default.
- W4386499191 hasRelatedWork W1993267564 @default.
- W4386499191 hasRelatedWork W2007176132 @default.
- W4386499191 hasRelatedWork W2062927577 @default.
- W4386499191 hasRelatedWork W2092701849 @default.
- W4386499191 hasRelatedWork W2318228201 @default.
- W4386499191 hasRelatedWork W2529376761 @default.
- W4386499191 hasRelatedWork W2807114581 @default.
- W4386499191 hasRelatedWork W3118494652 @default.
- W4386499191 hasRelatedWork W4313452744 @default.
- W4386499191 hasRelatedWork W4324130824 @default.
- W4386499191 isParatext "false" @default.