Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386499203> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4386499203 abstract "In recent days, learners faced difficulties learning programming courses. This research study will help the learners learn complex concepts quickly with different activities like flipped classrooms, online quizzes, learning by doing, and a virtual laboratory. This research is carried out to address the difficulties of learners and cover all the domains of learning, including knowledge, Skill, and Attitude. The fuzzy logic method has recently been applied in education to overcome these restrictions. While employing the fuzzy logic approach to evaluate student achievement, qualifications are assessed qualitatively rather than quantitatively. This research study applies Fuzzy Logic in the first stage, Factor Analysis (FA), and Machine Learning (ML) techniques in the second stage to discover essential factors associated with the effective use of Active Learning Strategies (ALS) in the Learning Management System (LMS) of information technology course learners. Fuzzy logic and neural network topology can be coupled using ANFIS, an adaptable network. FA is performed to find the critical factors for successful learners. The study compares the performance of five supervised machine learning algorithms: K-Nearest Neighbor, Decision Tree, Naive Bayes, Discriminant Analysis, and Support Vector Machine. These classifiers are evaluated to determine their suitability and model fit in the context of the research. In this study, real-time data is collected from B.Tech Information Technology learners. The following prediction models achieved high accuracy before FA analysis: Naive Bayes (90%), Support Vector Machine (89%), Discriminant Analysis (88%), Decision Tree (86%), and K-Nearest Neighbors (82%). Naive Bayes gives the best accuracy, with 90%. Following factor analysis (FA), the accuracy achieved by various classifiers is as follows: Naive Bayes - 92%, K-Nearest Neighbors - 92%, Support Vector Machine - 90%, Discriminant Analysis - 89%, and Decision Tree - 88%. Among these, Naive Bayes and K-Nearest Neighbors exhibit the highest accuracy of 92%." @default.
- W4386499203 created "2023-09-07" @default.
- W4386499203 creator A5031071540 @default.
- W4386499203 creator A5033178901 @default.
- W4386499203 creator A5064397085 @default.
- W4386499203 date "2023-09-01" @default.
- W4386499203 modified "2023-09-27" @default.
- W4386499203 title "Predicting Academic Performance of Learners With the Three Domains of Learning Data Using Neuro-fuzzy Model and Machine Learning Algorithms" @default.
- W4386499203 cites W1966165526 @default.
- W4386499203 cites W2054487404 @default.
- W4386499203 cites W2077361439 @default.
- W4386499203 cites W2084888911 @default.
- W4386499203 cites W2321919048 @default.
- W4386499203 cites W2342476492 @default.
- W4386499203 cites W2584256333 @default.
- W4386499203 cites W2606436201 @default.
- W4386499203 cites W2891140938 @default.
- W4386499203 cites W2935878216 @default.
- W4386499203 cites W2954365678 @default.
- W4386499203 cites W2967521452 @default.
- W4386499203 cites W2983382509 @default.
- W4386499203 cites W3028557498 @default.
- W4386499203 cites W3035905514 @default.
- W4386499203 cites W3047085642 @default.
- W4386499203 cites W3108215075 @default.
- W4386499203 cites W3115944912 @default.
- W4386499203 cites W3120327154 @default.
- W4386499203 cites W3139365198 @default.
- W4386499203 cites W3160463340 @default.
- W4386499203 cites W3176795340 @default.
- W4386499203 cites W3205451405 @default.
- W4386499203 cites W3214869169 @default.
- W4386499203 cites W4206836539 @default.
- W4386499203 cites W4214821456 @default.
- W4386499203 cites W4291178291 @default.
- W4386499203 cites W4308015774 @default.
- W4386499203 cites W4313477297 @default.
- W4386499203 doi "https://doi.org/10.1016/j.jer.2023.09.006" @default.
- W4386499203 hasPublicationYear "2023" @default.
- W4386499203 type Work @default.
- W4386499203 citedByCount "0" @default.
- W4386499203 crossrefType "journal-article" @default.
- W4386499203 hasAuthorship W4386499203A5031071540 @default.
- W4386499203 hasAuthorship W4386499203A5033178901 @default.
- W4386499203 hasAuthorship W4386499203A5064397085 @default.
- W4386499203 hasBestOaLocation W43864992031 @default.
- W4386499203 hasConcept C11413529 @default.
- W4386499203 hasConcept C119857082 @default.
- W4386499203 hasConcept C12267149 @default.
- W4386499203 hasConcept C154945302 @default.
- W4386499203 hasConcept C186108316 @default.
- W4386499203 hasConcept C195975749 @default.
- W4386499203 hasConcept C41008148 @default.
- W4386499203 hasConcept C50644808 @default.
- W4386499203 hasConcept C52001869 @default.
- W4386499203 hasConcept C58166 @default.
- W4386499203 hasConcept C84525736 @default.
- W4386499203 hasConceptScore W4386499203C11413529 @default.
- W4386499203 hasConceptScore W4386499203C119857082 @default.
- W4386499203 hasConceptScore W4386499203C12267149 @default.
- W4386499203 hasConceptScore W4386499203C154945302 @default.
- W4386499203 hasConceptScore W4386499203C186108316 @default.
- W4386499203 hasConceptScore W4386499203C195975749 @default.
- W4386499203 hasConceptScore W4386499203C41008148 @default.
- W4386499203 hasConceptScore W4386499203C50644808 @default.
- W4386499203 hasConceptScore W4386499203C52001869 @default.
- W4386499203 hasConceptScore W4386499203C58166 @default.
- W4386499203 hasConceptScore W4386499203C84525736 @default.
- W4386499203 hasLocation W43864992031 @default.
- W4386499203 hasOpenAccess W4386499203 @default.
- W4386499203 hasPrimaryLocation W43864992031 @default.
- W4386499203 hasRelatedWork W1470425429 @default.
- W4386499203 hasRelatedWork W3022791929 @default.
- W4386499203 hasRelatedWork W3186233728 @default.
- W4386499203 hasRelatedWork W4226139868 @default.
- W4386499203 hasRelatedWork W4285225238 @default.
- W4386499203 hasRelatedWork W4291177832 @default.
- W4386499203 hasRelatedWork W4377964522 @default.
- W4386499203 hasRelatedWork W4384345534 @default.
- W4386499203 hasRelatedWork W4385810203 @default.
- W4386499203 hasRelatedWork W4386263996 @default.
- W4386499203 isParatext "false" @default.
- W4386499203 isRetracted "false" @default.
- W4386499203 workType "article" @default.