Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386501105> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4386501105 endingPage "108168" @default.
- W4386501105 startingPage "108168" @default.
- W4386501105 abstract "Large Language Models (LLM) have been extensively studied for their ability to engage in textual dialogue and have shown promising results in various fields. However, the agricultural industry has yet to fully integrate LLM into its practice due to the dominance of visual images in agricultural data that cannot be effectively processed by LLM designed for text. Additionally, traditional image classification networks have limitations in understanding crop etiology and disease, hindering accurate diagnosis. Furthermore, the mixture of diseases can also interfere with the network's prediction. Therefore, accurately analyzing pests and diseases in agricultural scenarios and providing diagnostic reports remains a challenge. To address this issue, a novel approach that combines the deep logical reasoning capabilities of GPT-4 with the visual understanding capabilities of the YOLO (You Only Look Once) network was proposed in this study. Additionally, a new lightweight variant of YOLO, called YOLOPC, and a novel image-to-text mapping method for adapting YOLO and GPT were introduced. The experimental results demonstrate that YOLOPC, with approximately 75% fewer parameters than YOLOv5-nano, achieves a 94.5% accuracy rate. The GPT induction and reasoning module demonstrates 90% reasoning accuracy in generating agricultural diagnostic reports with text assistance. In the future, it is likely that a higher-performance GPT model will be released. The combination of GPT with agricultural scenarios will become the cornerstone of large-scale agricultural diagnostic models. The proposed method will benefit the development of large-scale models in the agricultural field." @default.
- W4386501105 created "2023-09-07" @default.
- W4386501105 creator A5013932942 @default.
- W4386501105 creator A5039324531 @default.
- W4386501105 creator A5049622255 @default.
- W4386501105 creator A5053583417 @default.
- W4386501105 date "2023-10-01" @default.
- W4386501105 modified "2023-10-09" @default.
- W4386501105 title "GPT-aided diagnosis on agricultural image based on a new light YOLOPC" @default.
- W4386501105 cites W1570513731 @default.
- W4386501105 cites W2027665608 @default.
- W4386501105 cites W2034733867 @default.
- W4386501105 cites W2058333183 @default.
- W4386501105 cites W2169473035 @default.
- W4386501105 cites W2789255992 @default.
- W4386501105 cites W2806298762 @default.
- W4386501105 cites W2939989568 @default.
- W4386501105 cites W3014940501 @default.
- W4386501105 cites W3193570173 @default.
- W4386501105 cites W4200221078 @default.
- W4386501105 cites W4291819654 @default.
- W4386501105 cites W4297200733 @default.
- W4386501105 cites W4317727200 @default.
- W4386501105 cites W4318559727 @default.
- W4386501105 cites W4319662928 @default.
- W4386501105 cites W4323357103 @default.
- W4386501105 cites W4327519588 @default.
- W4386501105 cites W4386047745 @default.
- W4386501105 doi "https://doi.org/10.1016/j.compag.2023.108168" @default.
- W4386501105 hasPublicationYear "2023" @default.
- W4386501105 type Work @default.
- W4386501105 citedByCount "0" @default.
- W4386501105 crossrefType "journal-article" @default.
- W4386501105 hasAuthorship W4386501105A5013932942 @default.
- W4386501105 hasAuthorship W4386501105A5039324531 @default.
- W4386501105 hasAuthorship W4386501105A5049622255 @default.
- W4386501105 hasAuthorship W4386501105A5053583417 @default.
- W4386501105 hasConcept C115961682 @default.
- W4386501105 hasConcept C118518473 @default.
- W4386501105 hasConcept C119857082 @default.
- W4386501105 hasConcept C154945302 @default.
- W4386501105 hasConcept C166957645 @default.
- W4386501105 hasConcept C202444582 @default.
- W4386501105 hasConcept C205649164 @default.
- W4386501105 hasConcept C2522767166 @default.
- W4386501105 hasConcept C2778755073 @default.
- W4386501105 hasConcept C33923547 @default.
- W4386501105 hasConcept C41008148 @default.
- W4386501105 hasConcept C58640448 @default.
- W4386501105 hasConcept C9652623 @default.
- W4386501105 hasConceptScore W4386501105C115961682 @default.
- W4386501105 hasConceptScore W4386501105C118518473 @default.
- W4386501105 hasConceptScore W4386501105C119857082 @default.
- W4386501105 hasConceptScore W4386501105C154945302 @default.
- W4386501105 hasConceptScore W4386501105C166957645 @default.
- W4386501105 hasConceptScore W4386501105C202444582 @default.
- W4386501105 hasConceptScore W4386501105C205649164 @default.
- W4386501105 hasConceptScore W4386501105C2522767166 @default.
- W4386501105 hasConceptScore W4386501105C2778755073 @default.
- W4386501105 hasConceptScore W4386501105C33923547 @default.
- W4386501105 hasConceptScore W4386501105C41008148 @default.
- W4386501105 hasConceptScore W4386501105C58640448 @default.
- W4386501105 hasConceptScore W4386501105C9652623 @default.
- W4386501105 hasLocation W43865011051 @default.
- W4386501105 hasOpenAccess W4386501105 @default.
- W4386501105 hasPrimaryLocation W43865011051 @default.
- W4386501105 hasRelatedWork W2267286817 @default.
- W4386501105 hasRelatedWork W2327874825 @default.
- W4386501105 hasRelatedWork W2349774843 @default.
- W4386501105 hasRelatedWork W2351852648 @default.
- W4386501105 hasRelatedWork W2355956201 @default.
- W4386501105 hasRelatedWork W2372580072 @default.
- W4386501105 hasRelatedWork W2386195957 @default.
- W4386501105 hasRelatedWork W2613051533 @default.
- W4386501105 hasRelatedWork W4294170338 @default.
- W4386501105 hasRelatedWork W4309573571 @default.
- W4386501105 hasVolume "213" @default.
- W4386501105 isParatext "false" @default.
- W4386501105 isRetracted "false" @default.
- W4386501105 workType "article" @default.