Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386504827> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4386504827 endingPage "107788" @default.
- W4386504827 startingPage "107788" @default.
- W4386504827 abstract "Oral cancer is the sixth most common kind of human cancer. Brush cytology for counting Argyrophilic Nucleolar Organizer Regions (AgNORs) can help early mouth cancer detection, lowering patient mortality. However, the manual counting of AgNORs still in use today is time-consuming, labor-intensive, and error-prone. The goal of our work is to address these shortcomings by proposing a convolutional neural network (CNN) based method to automatically segment individual nuclei and AgNORs in microscope slide images and count the number of AgNORs within each nucleus.We systematically defined, trained and tested 102 CNNs in the search for a high-performing solution. This included the evaluation of 51 network architectures combining 17 encoders with 3 decoders and 2 loss functions. These CNNs were trained and evaluated on a new AgNOR-stained image dataset of epithelial cells from oral mucosa containing 1,171 images from 48 patients, with ground truth annotated by specialists. The annotations were greatly facilitated by a semi-automatic procedure developed in our project. Overlapping nuclei, which tend to hide AgNORs, thus affecting their true count, were discarded using an automatic solution also developed in our project. Besides the evaluation on the test dataset, the robustness of the best performing model was evaluated against the results produced by a group of human experts on a second dataset.The best performing CNN model on the test dataset consisted of a DenseNet-169 + LinkNet with Focal Loss (DenseNet-169 as encoder and LinkNet as decoder). It obtained a Dice score of 0.90 and intersection over union (IoU) of 0.84. The counting of nuclei and AgNORs achieved precision and recall of 0.94 and 0.90 for nuclei, and 0.82 and 0.74 for AgNORs, respectively. Our solution achieved a performance similar to human experts on a set of 291 images from 6 new patients, obtaining Intraclass Correlation Coefficient (ICC) of 0.91 for nuclei and 0.81 for AgNORs with 95% confidence intervals of [0.89, 0.93] and [0.77, 0.84], respectively, and p-values < 0.001, confirming its statistical significance. Our AgNOR-stained image dataset is the most diverse publicly available AgNOR-stained image dataset in terms of number of patients and the first for oral cells.CNN-based joint segmentation and quantification of nuclei and NORs in AgNOR-stained images achieves expert-like performance levels, while being orders of magnitude faster than the later. Our solution demonstrated this by showing strong agreement with the results produced by a group of specialists, highlighting its potential to accelerate diagnostic workflows. Our trained model, code, and dataset are available and can stimulate new research in early oral cancer detection." @default.
- W4386504827 created "2023-09-08" @default.
- W4386504827 creator A5012373621 @default.
- W4386504827 creator A5042389952 @default.
- W4386504827 creator A5065873350 @default.
- W4386504827 creator A5087473227 @default.
- W4386504827 creator A5088056344 @default.
- W4386504827 date "2023-12-01" @default.
- W4386504827 modified "2023-09-29" @default.
- W4386504827 title "A CNN-based approach for joint segmentation and quantification of nuclei and NORs in AgNOR-stained images" @default.
- W4386504827 cites W1614760091 @default.
- W4386504827 cites W1996254121 @default.
- W4386504827 cites W2004892584 @default.
- W4386504827 cites W2041399057 @default.
- W4386504827 cites W2051088396 @default.
- W4386504827 cites W2073341578 @default.
- W4386504827 cites W2088220740 @default.
- W4386504827 cites W2098360374 @default.
- W4386504827 cites W2099540110 @default.
- W4386504827 cites W2110435930 @default.
- W4386504827 cites W2117539524 @default.
- W4386504827 cites W2118386984 @default.
- W4386504827 cites W2282666987 @default.
- W4386504827 cites W2317644243 @default.
- W4386504827 cites W2327037637 @default.
- W4386504827 cites W2397325893 @default.
- W4386504827 cites W2551340479 @default.
- W4386504827 cites W2947263797 @default.
- W4386504827 cites W2972093541 @default.
- W4386504827 cites W3099319035 @default.
- W4386504827 cites W4206693420 @default.
- W4386504827 doi "https://doi.org/10.1016/j.cmpb.2023.107788" @default.
- W4386504827 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37738838" @default.
- W4386504827 hasPublicationYear "2023" @default.
- W4386504827 type Work @default.
- W4386504827 citedByCount "0" @default.
- W4386504827 crossrefType "journal-article" @default.
- W4386504827 hasAuthorship W4386504827A5012373621 @default.
- W4386504827 hasAuthorship W4386504827A5042389952 @default.
- W4386504827 hasAuthorship W4386504827A5065873350 @default.
- W4386504827 hasAuthorship W4386504827A5087473227 @default.
- W4386504827 hasAuthorship W4386504827A5088056344 @default.
- W4386504827 hasConcept C111919701 @default.
- W4386504827 hasConcept C118505674 @default.
- W4386504827 hasConcept C146849305 @default.
- W4386504827 hasConcept C153180895 @default.
- W4386504827 hasConcept C154945302 @default.
- W4386504827 hasConcept C31972630 @default.
- W4386504827 hasConcept C41008148 @default.
- W4386504827 hasConcept C81363708 @default.
- W4386504827 hasConcept C89600930 @default.
- W4386504827 hasConceptScore W4386504827C111919701 @default.
- W4386504827 hasConceptScore W4386504827C118505674 @default.
- W4386504827 hasConceptScore W4386504827C146849305 @default.
- W4386504827 hasConceptScore W4386504827C153180895 @default.
- W4386504827 hasConceptScore W4386504827C154945302 @default.
- W4386504827 hasConceptScore W4386504827C31972630 @default.
- W4386504827 hasConceptScore W4386504827C41008148 @default.
- W4386504827 hasConceptScore W4386504827C81363708 @default.
- W4386504827 hasConceptScore W4386504827C89600930 @default.
- W4386504827 hasFunder F4320321091 @default.
- W4386504827 hasFunder F4320322025 @default.
- W4386504827 hasFunder F4320322502 @default.
- W4386504827 hasLocation W43865048271 @default.
- W4386504827 hasLocation W43865048272 @default.
- W4386504827 hasOpenAccess W4386504827 @default.
- W4386504827 hasPrimaryLocation W43865048271 @default.
- W4386504827 hasRelatedWork W1669643531 @default.
- W4386504827 hasRelatedWork W1982826852 @default.
- W4386504827 hasRelatedWork W2005437358 @default.
- W4386504827 hasRelatedWork W2008656436 @default.
- W4386504827 hasRelatedWork W2023558673 @default.
- W4386504827 hasRelatedWork W2110230079 @default.
- W4386504827 hasRelatedWork W2134924024 @default.
- W4386504827 hasRelatedWork W2517104666 @default.
- W4386504827 hasRelatedWork W2549299049 @default.
- W4386504827 hasRelatedWork W2613186388 @default.
- W4386504827 hasVolume "242" @default.
- W4386504827 isParatext "false" @default.
- W4386504827 isRetracted "false" @default.
- W4386504827 workType "article" @default.