Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386508492> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4386508492 endingPage "102661" @default.
- W4386508492 startingPage "102661" @default.
- W4386508492 abstract "Evidence-based medicine, the practice in which healthcare professionals refer to the best available evidence when making decisions, forms the foundation of modern healthcare. However, it relies on labour-intensive systematic reviews, where domain specialists must aggregate and extract information from thousands of publications, primarily of randomised controlled trial (RCT) results, into evidence tables. This paper investigates automating evidence table generation by decomposing the problem across two language processing tasks: named entity recognition, which identifies key entities within text, such as drug names, and relation extraction, which maps their relationships for separating them into ordered tuples. We focus on the automatic tabulation of sentences from published RCT abstracts that report the results of the study outcomes. Two deep neural net models were developed as part of a joint extraction pipeline, using the principles of transfer learning and transformer-based language representations. To train and test these models, a new gold-standard corpus was developed, comprising over 550 result sentences from six disease areas. This approach demonstrated significant advantages, with our system performing well across multiple natural language processing tasks and disease areas, as well as in generalising to disease domains unseen during training. Furthermore, we show these results were achievable through training our models on as few as 170 example sentences. The final system is a proof of concept that the generation of evidence tables can be semi-automated, representing a step towards fully automating systematic reviews." @default.
- W4386508492 created "2023-09-08" @default.
- W4386508492 creator A5014484710 @default.
- W4386508492 creator A5019854432 @default.
- W4386508492 date "2023-10-01" @default.
- W4386508492 modified "2023-10-11" @default.
- W4386508492 title "Automated tabulation of clinical trial results: A joint entity and relation extraction approach with transformer-based language representations" @default.
- W4386508492 cites W1629765770 @default.
- W4386508492 cites W2004763266 @default.
- W4386508492 cites W2020959315 @default.
- W4386508492 cites W2032570581 @default.
- W4386508492 cites W2035682999 @default.
- W4386508492 cites W2051326280 @default.
- W4386508492 cites W2068698008 @default.
- W4386508492 cites W2106952837 @default.
- W4386508492 cites W2414378847 @default.
- W4386508492 cites W2477907264 @default.
- W4386508492 cites W2593758073 @default.
- W4386508492 cites W2809349863 @default.
- W4386508492 cites W2909761571 @default.
- W4386508492 cites W2911489562 @default.
- W4386508492 cites W2992824360 @default.
- W4386508492 cites W3011079674 @default.
- W4386508492 cites W3011594683 @default.
- W4386508492 cites W3035021780 @default.
- W4386508492 cites W3142843273 @default.
- W4386508492 cites W3175892651 @default.
- W4386508492 cites W4247903468 @default.
- W4386508492 cites W4282960293 @default.
- W4386508492 cites W4283079132 @default.
- W4386508492 cites W4364365948 @default.
- W4386508492 doi "https://doi.org/10.1016/j.artmed.2023.102661" @default.
- W4386508492 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37783549" @default.
- W4386508492 hasPublicationYear "2023" @default.
- W4386508492 type Work @default.
- W4386508492 citedByCount "0" @default.
- W4386508492 crossrefType "journal-article" @default.
- W4386508492 hasAuthorship W4386508492A5014484710 @default.
- W4386508492 hasAuthorship W4386508492A5019854432 @default.
- W4386508492 hasBestOaLocation W43865084921 @default.
- W4386508492 hasConcept C118615104 @default.
- W4386508492 hasConcept C118930307 @default.
- W4386508492 hasConcept C119857082 @default.
- W4386508492 hasConcept C121332964 @default.
- W4386508492 hasConcept C124101348 @default.
- W4386508492 hasConcept C153604712 @default.
- W4386508492 hasConcept C154945302 @default.
- W4386508492 hasConcept C165801399 @default.
- W4386508492 hasConcept C195324797 @default.
- W4386508492 hasConcept C195807954 @default.
- W4386508492 hasConcept C204321447 @default.
- W4386508492 hasConcept C23123220 @default.
- W4386508492 hasConcept C2522767166 @default.
- W4386508492 hasConcept C33923547 @default.
- W4386508492 hasConcept C41008148 @default.
- W4386508492 hasConcept C62520636 @default.
- W4386508492 hasConcept C66322947 @default.
- W4386508492 hasConceptScore W4386508492C118615104 @default.
- W4386508492 hasConceptScore W4386508492C118930307 @default.
- W4386508492 hasConceptScore W4386508492C119857082 @default.
- W4386508492 hasConceptScore W4386508492C121332964 @default.
- W4386508492 hasConceptScore W4386508492C124101348 @default.
- W4386508492 hasConceptScore W4386508492C153604712 @default.
- W4386508492 hasConceptScore W4386508492C154945302 @default.
- W4386508492 hasConceptScore W4386508492C165801399 @default.
- W4386508492 hasConceptScore W4386508492C195324797 @default.
- W4386508492 hasConceptScore W4386508492C195807954 @default.
- W4386508492 hasConceptScore W4386508492C204321447 @default.
- W4386508492 hasConceptScore W4386508492C23123220 @default.
- W4386508492 hasConceptScore W4386508492C2522767166 @default.
- W4386508492 hasConceptScore W4386508492C33923547 @default.
- W4386508492 hasConceptScore W4386508492C41008148 @default.
- W4386508492 hasConceptScore W4386508492C62520636 @default.
- W4386508492 hasConceptScore W4386508492C66322947 @default.
- W4386508492 hasLocation W43865084921 @default.
- W4386508492 hasLocation W43865084922 @default.
- W4386508492 hasOpenAccess W4386508492 @default.
- W4386508492 hasPrimaryLocation W43865084921 @default.
- W4386508492 hasRelatedWork W2092919065 @default.
- W4386508492 hasRelatedWork W2352298027 @default.
- W4386508492 hasRelatedWork W2408506617 @default.
- W4386508492 hasRelatedWork W2798237655 @default.
- W4386508492 hasRelatedWork W2888645935 @default.
- W4386508492 hasRelatedWork W2915573705 @default.
- W4386508492 hasRelatedWork W3114696828 @default.
- W4386508492 hasRelatedWork W3138801416 @default.
- W4386508492 hasRelatedWork W4319940250 @default.
- W4386508492 hasRelatedWork W842810586 @default.
- W4386508492 hasVolume "144" @default.
- W4386508492 isParatext "false" @default.
- W4386508492 isRetracted "false" @default.
- W4386508492 workType "article" @default.