Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386508846> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4386508846 endingPage "11" @default.
- W4386508846 startingPage "1" @default.
- W4386508846 abstract "Artificial neural networks (NNs) are a machine learning algorithm that have been used as a convenient alternative of conventional statistical models, such as regression in prediction and classification because of their capability of modeling complex relationships between dependent and independent variables without a priori assumptions about the model form and variable distributions. However, traditional NNs cannot incorporate dependencies of data with a clustering or nesting structure involved in longitudinal studies and cluster sampling. This research is intended to fill this literature gap by integrating the random-effects structure into NNs to account for within-cluster correlations. The proposed NN method incorporating random effects (NNRE) is trained by minimizing the cost function using the backpropagation algorithm combined with the quasi-Newton and gradient descent algorithms. Model overfitting is controlled by using the L2 regularization method. The trained NNRE model is evaluated for prediction accuracy by using the leaving-one-out cross-validation for both simulated and real data. Prediction accuracy is compared between NNRE and two existing models, the conventional generalized linear mixed model (GLIMMIX) and the generalized neural network mixed model (GNMM), using simulations and real data. Results show that the proposed NNRE results in higher accuracy than both the GLIMMIX and GNMM." @default.
- W4386508846 created "2023-09-08" @default.
- W4386508846 creator A5062226737 @default.
- W4386508846 date "2023-09-07" @default.
- W4386508846 modified "2023-10-16" @default.
- W4386508846 title "A machine learning approach for clustered data" @default.
- W4386508846 cites W1597944220 @default.
- W4386508846 cites W1881396261 @default.
- W4386508846 cites W1971622337 @default.
- W4386508846 cites W1975875951 @default.
- W4386508846 cites W1995341919 @default.
- W4386508846 cites W2021484063 @default.
- W4386508846 cites W2094325876 @default.
- W4386508846 cites W2137983211 @default.
- W4386508846 cites W2256578114 @default.
- W4386508846 cites W2604087180 @default.
- W4386508846 cites W2997715027 @default.
- W4386508846 cites W4200455555 @default.
- W4386508846 cites W4235874811 @default.
- W4386508846 cites W4244611409 @default.
- W4386508846 cites W4247571494 @default.
- W4386508846 doi "https://doi.org/10.1080/03610918.2023.2254953" @default.
- W4386508846 hasPublicationYear "2023" @default.
- W4386508846 type Work @default.
- W4386508846 citedByCount "0" @default.
- W4386508846 crossrefType "journal-article" @default.
- W4386508846 hasAuthorship W4386508846A5062226737 @default.
- W4386508846 hasConcept C111472728 @default.
- W4386508846 hasConcept C119857082 @default.
- W4386508846 hasConcept C138885662 @default.
- W4386508846 hasConcept C153258448 @default.
- W4386508846 hasConcept C154945302 @default.
- W4386508846 hasConcept C155032097 @default.
- W4386508846 hasConcept C22019652 @default.
- W4386508846 hasConcept C2776135515 @default.
- W4386508846 hasConcept C41008148 @default.
- W4386508846 hasConcept C50644808 @default.
- W4386508846 hasConcept C73555534 @default.
- W4386508846 hasConcept C75553542 @default.
- W4386508846 hasConceptScore W4386508846C111472728 @default.
- W4386508846 hasConceptScore W4386508846C119857082 @default.
- W4386508846 hasConceptScore W4386508846C138885662 @default.
- W4386508846 hasConceptScore W4386508846C153258448 @default.
- W4386508846 hasConceptScore W4386508846C154945302 @default.
- W4386508846 hasConceptScore W4386508846C155032097 @default.
- W4386508846 hasConceptScore W4386508846C22019652 @default.
- W4386508846 hasConceptScore W4386508846C2776135515 @default.
- W4386508846 hasConceptScore W4386508846C41008148 @default.
- W4386508846 hasConceptScore W4386508846C50644808 @default.
- W4386508846 hasConceptScore W4386508846C73555534 @default.
- W4386508846 hasConceptScore W4386508846C75553542 @default.
- W4386508846 hasLocation W43865088461 @default.
- W4386508846 hasOpenAccess W4386508846 @default.
- W4386508846 hasPrimaryLocation W43865088461 @default.
- W4386508846 hasRelatedWork W1996541855 @default.
- W4386508846 hasRelatedWork W2018476170 @default.
- W4386508846 hasRelatedWork W2076918464 @default.
- W4386508846 hasRelatedWork W2372980479 @default.
- W4386508846 hasRelatedWork W2989932438 @default.
- W4386508846 hasRelatedWork W3099765033 @default.
- W4386508846 hasRelatedWork W3123071383 @default.
- W4386508846 hasRelatedWork W3159389381 @default.
- W4386508846 hasRelatedWork W4210794429 @default.
- W4386508846 hasRelatedWork W4283732135 @default.
- W4386508846 isParatext "false" @default.
- W4386508846 isRetracted "false" @default.
- W4386508846 workType "article" @default.