Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386510320> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4386510320 endingPage "158" @default.
- W4386510320 startingPage "153" @default.
- W4386510320 abstract "Heart disease greatly threats human life and health. Through machine learning algorithms and models, computers can autonomously classify and predict data, thereby achieving analysis and prediction of unknown data. This research used Logistic Regression algorithm and 14 physical indicators from 302 patients to investigate heart attack. It found that because the correlation coefficient is greater than 0.4, the correlation that have to do with heart attack and what kind of chest pain it is, the maximum value of heart rate, whether have exercise induced angina and the ST depression was strong. The correlation have to do with heart attack and age, sex, number of main blood vessels, thalassemia is weaker. Correlation have to do with heart attack and cholestoral, the fasting blood sugar was the weakest. People who is older and men have more possibility to develop heart disease. The accuracy of the prediction is about 85.95%. The findings of this paper suggests that Logistic Regression algorithm will play a crucial role in preventing heart disease thus bringing better treatment outcomes to patients" @default.
- W4386510320 created "2023-09-08" @default.
- W4386510320 creator A5020375378 @default.
- W4386510320 date "2023-08-29" @default.
- W4386510320 modified "2023-10-16" @default.
- W4386510320 title "Research on the heart attack prediction based on logistic regression" @default.
- W4386510320 cites W1492583703 @default.
- W4386510320 cites W2900794383 @default.
- W4386510320 cites W2962826307 @default.
- W4386510320 cites W4200473466 @default.
- W4386510320 cites W4280583453 @default.
- W4386510320 doi "https://doi.org/10.54097/hset.v65i.11357" @default.
- W4386510320 hasPublicationYear "2023" @default.
- W4386510320 type Work @default.
- W4386510320 citedByCount "0" @default.
- W4386510320 crossrefType "journal-article" @default.
- W4386510320 hasAuthorship W4386510320A5020375378 @default.
- W4386510320 hasBestOaLocation W43865103201 @default.
- W4386510320 hasConcept C117220453 @default.
- W4386510320 hasConcept C126322002 @default.
- W4386510320 hasConcept C139719470 @default.
- W4386510320 hasConcept C151956035 @default.
- W4386510320 hasConcept C162324750 @default.
- W4386510320 hasConcept C164705383 @default.
- W4386510320 hasConcept C1862650 @default.
- W4386510320 hasConcept C2524010 @default.
- W4386510320 hasConcept C2776867660 @default.
- W4386510320 hasConcept C2778425758 @default.
- W4386510320 hasConcept C2779134260 @default.
- W4386510320 hasConcept C2780074459 @default.
- W4386510320 hasConcept C3018906752 @default.
- W4386510320 hasConcept C33923547 @default.
- W4386510320 hasConcept C500558357 @default.
- W4386510320 hasConcept C71924100 @default.
- W4386510320 hasConceptScore W4386510320C117220453 @default.
- W4386510320 hasConceptScore W4386510320C126322002 @default.
- W4386510320 hasConceptScore W4386510320C139719470 @default.
- W4386510320 hasConceptScore W4386510320C151956035 @default.
- W4386510320 hasConceptScore W4386510320C162324750 @default.
- W4386510320 hasConceptScore W4386510320C164705383 @default.
- W4386510320 hasConceptScore W4386510320C1862650 @default.
- W4386510320 hasConceptScore W4386510320C2524010 @default.
- W4386510320 hasConceptScore W4386510320C2776867660 @default.
- W4386510320 hasConceptScore W4386510320C2778425758 @default.
- W4386510320 hasConceptScore W4386510320C2779134260 @default.
- W4386510320 hasConceptScore W4386510320C2780074459 @default.
- W4386510320 hasConceptScore W4386510320C3018906752 @default.
- W4386510320 hasConceptScore W4386510320C33923547 @default.
- W4386510320 hasConceptScore W4386510320C500558357 @default.
- W4386510320 hasConceptScore W4386510320C71924100 @default.
- W4386510320 hasLocation W43865103201 @default.
- W4386510320 hasOpenAccess W4386510320 @default.
- W4386510320 hasPrimaryLocation W43865103201 @default.
- W4386510320 hasRelatedWork W2350408400 @default.
- W4386510320 hasRelatedWork W2363744079 @default.
- W4386510320 hasRelatedWork W2374518361 @default.
- W4386510320 hasRelatedWork W2379084044 @default.
- W4386510320 hasRelatedWork W2380152327 @default.
- W4386510320 hasRelatedWork W2398742161 @default.
- W4386510320 hasRelatedWork W2411149122 @default.
- W4386510320 hasRelatedWork W3152211614 @default.
- W4386510320 hasRelatedWork W4236811438 @default.
- W4386510320 hasRelatedWork W4281758839 @default.
- W4386510320 hasVolume "65" @default.
- W4386510320 isParatext "false" @default.
- W4386510320 isRetracted "false" @default.
- W4386510320 workType "article" @default.