Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386514528> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4386514528 abstract "As a result of the COVID-19 (coronavirus) disease due to SARS-CoV2 becoming a pandemic, it has spread over the globe. It takes time to evaluate the results of the laboratory tests because of the rising number of cases each day. Therefore, there are restrictions in terms of both therapy and findings. A clinical decision-making system with predictive algorithms is needed to alleviate the pressure on healthcare systems via Deep Learning (DL) algorithms. With the use of DL and chest scans, this research intends to determine COVID-19 patients by utilizing the Transfer Learning (TL)-based Generative Adversarial Network (Pix 2 Pix-GAN). Moreover, the COVID-19 images are then classified as either positive or negative using a Duffing Equation Tuna Swarm (DETS)-optimized Resnet 101 classifier trained on synthetic and real images from the Kaggle lung CT Covid dataset. Implementation of the proposed technique is done using MATLAB simulations. Besides, is evaluated via accuracy, precision, F1-score, recall, and AUC. Experimental findings show that the proposed prediction model identifies COVID-19 patients with 97.2% accuracy, a recall of 95.9%, and a specificity of 95.5%, which suggests the proposed predictive model can be utilized to forecast COVID-19 infection by medical specialists for clinical prediction research and can be beneficial to them." @default.
- W4386514528 created "2023-09-08" @default.
- W4386514528 creator A5040058246 @default.
- W4386514528 creator A5044464276 @default.
- W4386514528 creator A5080516529 @default.
- W4386514528 date "2023-09-07" @default.
- W4386514528 modified "2023-09-27" @default.
- W4386514528 title "Prediction of the COVID disease using lung CT images by Deep Learning algorithm: DETS-optimized Resnet 101 classifier" @default.
- W4386514528 cites W3016143592 @default.
- W4386514528 cites W3016970897 @default.
- W4386514528 cites W3024575832 @default.
- W4386514528 cites W3026931681 @default.
- W4386514528 cites W3029868556 @default.
- W4386514528 cites W3038780555 @default.
- W4386514528 cites W3089265909 @default.
- W4386514528 cites W3095681026 @default.
- W4386514528 cites W3105081694 @default.
- W4386514528 cites W3111860820 @default.
- W4386514528 cites W3114166611 @default.
- W4386514528 cites W3121075973 @default.
- W4386514528 cites W3122950889 @default.
- W4386514528 cites W3128741952 @default.
- W4386514528 cites W3133191822 @default.
- W4386514528 cites W3138274921 @default.
- W4386514528 cites W3144061366 @default.
- W4386514528 cites W3155641141 @default.
- W4386514528 cites W3164422602 @default.
- W4386514528 cites W3164582999 @default.
- W4386514528 cites W3167058729 @default.
- W4386514528 cites W3183871793 @default.
- W4386514528 cites W3192975746 @default.
- W4386514528 cites W3205104533 @default.
- W4386514528 cites W3207993568 @default.
- W4386514528 cites W3210849053 @default.
- W4386514528 cites W3215041041 @default.
- W4386514528 cites W4205635462 @default.
- W4386514528 cites W4283713636 @default.
- W4386514528 cites W4360795190 @default.
- W4386514528 cites W4365440898 @default.
- W4386514528 cites W4367678680 @default.
- W4386514528 doi "https://doi.org/10.3389/fmed.2023.1157000" @default.
- W4386514528 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37746067" @default.
- W4386514528 hasPublicationYear "2023" @default.
- W4386514528 type Work @default.
- W4386514528 citedByCount "0" @default.
- W4386514528 crossrefType "journal-article" @default.
- W4386514528 hasAuthorship W4386514528A5040058246 @default.
- W4386514528 hasAuthorship W4386514528A5044464276 @default.
- W4386514528 hasAuthorship W4386514528A5080516529 @default.
- W4386514528 hasBestOaLocation W43865145281 @default.
- W4386514528 hasConcept C108583219 @default.
- W4386514528 hasConcept C11413529 @default.
- W4386514528 hasConcept C119857082 @default.
- W4386514528 hasConcept C142724271 @default.
- W4386514528 hasConcept C154945302 @default.
- W4386514528 hasConcept C2779134260 @default.
- W4386514528 hasConcept C3008058167 @default.
- W4386514528 hasConcept C41008148 @default.
- W4386514528 hasConcept C524204448 @default.
- W4386514528 hasConcept C71924100 @default.
- W4386514528 hasConcept C95623464 @default.
- W4386514528 hasConceptScore W4386514528C108583219 @default.
- W4386514528 hasConceptScore W4386514528C11413529 @default.
- W4386514528 hasConceptScore W4386514528C119857082 @default.
- W4386514528 hasConceptScore W4386514528C142724271 @default.
- W4386514528 hasConceptScore W4386514528C154945302 @default.
- W4386514528 hasConceptScore W4386514528C2779134260 @default.
- W4386514528 hasConceptScore W4386514528C3008058167 @default.
- W4386514528 hasConceptScore W4386514528C41008148 @default.
- W4386514528 hasConceptScore W4386514528C524204448 @default.
- W4386514528 hasConceptScore W4386514528C71924100 @default.
- W4386514528 hasConceptScore W4386514528C95623464 @default.
- W4386514528 hasLocation W43865145281 @default.
- W4386514528 hasLocation W43865145282 @default.
- W4386514528 hasOpenAccess W4386514528 @default.
- W4386514528 hasPrimaryLocation W43865145281 @default.
- W4386514528 hasRelatedWork W2795261237 @default.
- W4386514528 hasRelatedWork W3014300295 @default.
- W4386514528 hasRelatedWork W3164822677 @default.
- W4386514528 hasRelatedWork W4223943233 @default.
- W4386514528 hasRelatedWork W4225161397 @default.
- W4386514528 hasRelatedWork W4312200629 @default.
- W4386514528 hasRelatedWork W4360585206 @default.
- W4386514528 hasRelatedWork W4364306694 @default.
- W4386514528 hasRelatedWork W4380075502 @default.
- W4386514528 hasRelatedWork W4380086463 @default.
- W4386514528 hasVolume "10" @default.
- W4386514528 isParatext "false" @default.
- W4386514528 isRetracted "false" @default.
- W4386514528 workType "article" @default.