Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386518069> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4386518069 endingPage "38" @default.
- W4386518069 startingPage "32" @default.
- W4386518069 abstract "With the development of big data, blockchain artificial intelligence, and other technologies, the development of the financial industry also plays a great role in promoting the development of digital finance is also developing rapidly, the huge amount of financial data, the laws behind, randomness, the complexity have increased the difficulty of processing our data. The financial industry is also increasingly in need of data processing talents. For financial data such as: intra-day high-frequency data and stock price and volume data processing, Python has the points of fast calculation speed, open source, and excellent data visualization. In this paper, financial data analysis work based on the Python platform, six FTSE A50 constituent stocks of different industries are selected from the Chinese stock market, namely China Merchants Bank, SAIC Group, Haitong Securities, Capital Mining, China Unicom and Poly Development for financial data analysis. The optimal portfolio with the largest Sharpe ratio and the optimal portfolio with the smallest variance is obtained empirically by Python, and optimized by Monte Carlo simulation, and their expected returns, standard deviations, and Sharpe ratios are compared and analyzed, and finally, the effective boundaries of the asset portfolios are given. The importance of Markowitz‘s portfolio theory in financial risk management is further illustrated through empirical analysis." @default.
- W4386518069 created "2023-09-08" @default.
- W4386518069 creator A5088558071 @default.
- W4386518069 date "2023-06-29" @default.
- W4386518069 modified "2023-09-27" @default.
- W4386518069 title "Portfolio Optimization of Stocks – Python-Based Stock Analysis" @default.
- W4386518069 cites W2026430219 @default.
- W4386518069 cites W3199351510 @default.
- W4386518069 doi "https://doi.org/10.54097/ijeh.v9i2.9584" @default.
- W4386518069 hasPublicationYear "2023" @default.
- W4386518069 type Work @default.
- W4386518069 citedByCount "0" @default.
- W4386518069 crossrefType "journal-article" @default.
- W4386518069 hasAuthorship W4386518069A5088558071 @default.
- W4386518069 hasConcept C106159729 @default.
- W4386518069 hasConcept C111919701 @default.
- W4386518069 hasConcept C127413603 @default.
- W4386518069 hasConcept C139938925 @default.
- W4386518069 hasConcept C149782125 @default.
- W4386518069 hasConcept C162324750 @default.
- W4386518069 hasConcept C202655437 @default.
- W4386518069 hasConcept C204036174 @default.
- W4386518069 hasConcept C2780821815 @default.
- W4386518069 hasConcept C41008148 @default.
- W4386518069 hasConcept C519991488 @default.
- W4386518069 hasConcept C78519656 @default.
- W4386518069 hasConcept C9725762 @default.
- W4386518069 hasConceptScore W4386518069C106159729 @default.
- W4386518069 hasConceptScore W4386518069C111919701 @default.
- W4386518069 hasConceptScore W4386518069C127413603 @default.
- W4386518069 hasConceptScore W4386518069C139938925 @default.
- W4386518069 hasConceptScore W4386518069C149782125 @default.
- W4386518069 hasConceptScore W4386518069C162324750 @default.
- W4386518069 hasConceptScore W4386518069C202655437 @default.
- W4386518069 hasConceptScore W4386518069C204036174 @default.
- W4386518069 hasConceptScore W4386518069C2780821815 @default.
- W4386518069 hasConceptScore W4386518069C41008148 @default.
- W4386518069 hasConceptScore W4386518069C519991488 @default.
- W4386518069 hasConceptScore W4386518069C78519656 @default.
- W4386518069 hasConceptScore W4386518069C9725762 @default.
- W4386518069 hasIssue "2" @default.
- W4386518069 hasLocation W43865180691 @default.
- W4386518069 hasOpenAccess W4386518069 @default.
- W4386518069 hasPrimaryLocation W43865180691 @default.
- W4386518069 hasRelatedWork W2887685916 @default.
- W4386518069 hasRelatedWork W3012119081 @default.
- W4386518069 hasRelatedWork W4225637079 @default.
- W4386518069 hasRelatedWork W4288540374 @default.
- W4386518069 hasRelatedWork W4312257806 @default.
- W4386518069 hasRelatedWork W4327779378 @default.
- W4386518069 hasRelatedWork W4327968198 @default.
- W4386518069 hasRelatedWork W4328095910 @default.
- W4386518069 hasRelatedWork W4372361123 @default.
- W4386518069 hasRelatedWork W4381469024 @default.
- W4386518069 hasVolume "9" @default.
- W4386518069 isParatext "false" @default.
- W4386518069 isRetracted "false" @default.
- W4386518069 workType "article" @default.