Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386522947> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4386522947 abstract "Abstract This paper first explores and evaluates English-Chinese translation skills through deep learning in machine learning based on big data technology, focusing on applying convolutional neural networks and long and short-term memory network models in English-Chinese translation. Then it is to construct a deep learning evaluation model based on the dataset with text-level labels of English-Chinese translation. The structure of the deep learning evaluation model consists of three categories: data representation of text, feature extraction of text, and text classifier. Finally, the research object is determined from the purpose of the study, and the data analysis is performed on the experimental and control groups using the deep learning model to characterize the fluency by the continuous convergence of the data. The results showed that the continuous convergence of the experimental group remained in the range of 76.95% to 82.6%, and its average value was 79.76%. The continuous convergence of the control group remained in the range of 60.15% to 71.92%, with a mean value of 67.02%. The average convergence value of the experimental group was 12.74% higher than that of the control group, and the experimental group outperformed the control group. This study should learn and cultivate English-Chinese translation skills while improving the efficiency and accuracy of English-Chinese translation, which is a guiding reference value for the progress of translation talents." @default.
- W4386522947 created "2023-09-08" @default.
- W4386522947 creator A5018590263 @default.
- W4386522947 date "2023-08-16" @default.
- W4386522947 modified "2023-10-14" @default.
- W4386522947 title "Exploring English-Chinese Translation Skills Based on Big Data Technology" @default.
- W4386522947 cites W2734721087 @default.
- W4386522947 cites W2911956201 @default.
- W4386522947 cites W3164399832 @default.
- W4386522947 cites W3173312377 @default.
- W4386522947 cites W3185187961 @default.
- W4386522947 cites W4283215661 @default.
- W4386522947 doi "https://doi.org/10.2478/amns.2023.2.00196" @default.
- W4386522947 hasPublicationYear "2023" @default.
- W4386522947 type Work @default.
- W4386522947 citedByCount "0" @default.
- W4386522947 crossrefType "journal-article" @default.
- W4386522947 hasAuthorship W4386522947A5018590263 @default.
- W4386522947 hasBestOaLocation W43865229471 @default.
- W4386522947 hasConcept C104317684 @default.
- W4386522947 hasConcept C105580179 @default.
- W4386522947 hasConcept C108583219 @default.
- W4386522947 hasConcept C124101348 @default.
- W4386522947 hasConcept C149364088 @default.
- W4386522947 hasConcept C154945302 @default.
- W4386522947 hasConcept C162324750 @default.
- W4386522947 hasConcept C185592680 @default.
- W4386522947 hasConcept C204321447 @default.
- W4386522947 hasConcept C2777303404 @default.
- W4386522947 hasConcept C41008148 @default.
- W4386522947 hasConcept C50522688 @default.
- W4386522947 hasConcept C55493867 @default.
- W4386522947 hasConcept C75684735 @default.
- W4386522947 hasConcept C81363708 @default.
- W4386522947 hasConceptScore W4386522947C104317684 @default.
- W4386522947 hasConceptScore W4386522947C105580179 @default.
- W4386522947 hasConceptScore W4386522947C108583219 @default.
- W4386522947 hasConceptScore W4386522947C124101348 @default.
- W4386522947 hasConceptScore W4386522947C149364088 @default.
- W4386522947 hasConceptScore W4386522947C154945302 @default.
- W4386522947 hasConceptScore W4386522947C162324750 @default.
- W4386522947 hasConceptScore W4386522947C185592680 @default.
- W4386522947 hasConceptScore W4386522947C204321447 @default.
- W4386522947 hasConceptScore W4386522947C2777303404 @default.
- W4386522947 hasConceptScore W4386522947C41008148 @default.
- W4386522947 hasConceptScore W4386522947C50522688 @default.
- W4386522947 hasConceptScore W4386522947C55493867 @default.
- W4386522947 hasConceptScore W4386522947C75684735 @default.
- W4386522947 hasConceptScore W4386522947C81363708 @default.
- W4386522947 hasIssue "0" @default.
- W4386522947 hasLocation W43865229471 @default.
- W4386522947 hasOpenAccess W4386522947 @default.
- W4386522947 hasPrimaryLocation W43865229471 @default.
- W4386522947 hasRelatedWork W2731899572 @default.
- W4386522947 hasRelatedWork W2999805992 @default.
- W4386522947 hasRelatedWork W3011074480 @default.
- W4386522947 hasRelatedWork W3014300295 @default.
- W4386522947 hasRelatedWork W3116150086 @default.
- W4386522947 hasRelatedWork W3133861977 @default.
- W4386522947 hasRelatedWork W4200173597 @default.
- W4386522947 hasRelatedWork W4291897433 @default.
- W4386522947 hasRelatedWork W4312417841 @default.
- W4386522947 hasRelatedWork W4321369474 @default.
- W4386522947 hasVolume "0" @default.
- W4386522947 isParatext "false" @default.
- W4386522947 isRetracted "false" @default.
- W4386522947 workType "article" @default.