Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386525006> ?p ?o ?g. }
- W4386525006 endingPage "3839" @default.
- W4386525006 startingPage "3839" @default.
- W4386525006 abstract "Deep learning has achieved great successes in performing many visual recognition tasks, including object detection. Nevertheless, existing deep networks are computationally expensive and memory intensive, hindering their deployment in resource-constrained environments, such as mobile or embedded devices that are widely used by city travellers. Recently, estimating city-level travel patterns using street imagery has been shown to be a potentially valid way according to a case study with Google Street View (GSV), addressing a critical challenge in transport object detection. This paper presents a compressed deep network using tensor decomposition to detect transport objects in GSV images, which is sustainable and eco-friendly. In particular, a new dataset named Transport Mode Share-Tokyo (TMS-Tokyo) is created to serve the public for transport object detection. This is based on the selection and filtering of 32,555 acquired images that involve 50,827 visible transport objects (including cars, pedestrians, buses, trucks, motors, vans, cyclists and parked bicycles) from the GSV imagery of Tokyo. Then a compressed convolutional neural network (termed SVDet) is proposed for street view object detection via tensor train decomposition on a given baseline detector. The method proposed herein yields a mean average precision (mAP) of 77.6% on the newly introduced dataset, TMS-Tokyo, necessitating just 17.29 M parameters and a computational capacity of 16.52 G FLOPs. As such, it markedly surpasses the performance of existing state-of-the-art methods documented in the literature." @default.
- W4386525006 created "2023-09-08" @default.
- W4386525006 creator A5009384804 @default.
- W4386525006 creator A5036010787 @default.
- W4386525006 creator A5039652471 @default.
- W4386525006 creator A5060504605 @default.
- W4386525006 creator A5063391988 @default.
- W4386525006 creator A5070319233 @default.
- W4386525006 date "2023-09-07" @default.
- W4386525006 modified "2023-10-16" @default.
- W4386525006 title "Transport Object Detection in Street View Imagery Using Decomposed Convolutional Neural Networks" @default.
- W4386525006 cites W1861492603 @default.
- W4386525006 cites W1978338723 @default.
- W4386525006 cites W1993482030 @default.
- W4386525006 cites W1996901117 @default.
- W4386525006 cites W2031489346 @default.
- W4386525006 cites W2058641082 @default.
- W4386525006 cites W2088049833 @default.
- W4386525006 cites W2102605133 @default.
- W4386525006 cites W2108598243 @default.
- W4386525006 cites W2109255472 @default.
- W4386525006 cites W2120615054 @default.
- W4386525006 cites W2121775913 @default.
- W4386525006 cites W2148386210 @default.
- W4386525006 cites W2150066425 @default.
- W4386525006 cites W2194775991 @default.
- W4386525006 cites W2340897893 @default.
- W4386525006 cites W2412782625 @default.
- W4386525006 cites W2549401308 @default.
- W4386525006 cites W2565639579 @default.
- W4386525006 cites W2741475459 @default.
- W4386525006 cites W2781228439 @default.
- W4386525006 cites W2781622569 @default.
- W4386525006 cites W2786125546 @default.
- W4386525006 cites W2807183728 @default.
- W4386525006 cites W2903963188 @default.
- W4386525006 cites W2962721361 @default.
- W4386525006 cites W2962749812 @default.
- W4386525006 cites W2963037989 @default.
- W4386525006 cites W2963150697 @default.
- W4386525006 cites W2963351448 @default.
- W4386525006 cites W2963446712 @default.
- W4386525006 cites W2963857746 @default.
- W4386525006 cites W2964241181 @default.
- W4386525006 cites W2964444661 @default.
- W4386525006 cites W2982770724 @default.
- W4386525006 cites W3021941048 @default.
- W4386525006 cites W3034971973 @default.
- W4386525006 cites W3035396860 @default.
- W4386525006 cites W3035564946 @default.
- W4386525006 cites W3035694605 @default.
- W4386525006 cites W3106250896 @default.
- W4386525006 cites W4206022883 @default.
- W4386525006 cites W4220707259 @default.
- W4386525006 cites W4220827132 @default.
- W4386525006 cites W4224236022 @default.
- W4386525006 cites W4226025872 @default.
- W4386525006 cites W4226434924 @default.
- W4386525006 cites W4226498433 @default.
- W4386525006 cites W4291819654 @default.
- W4386525006 cites W4297533947 @default.
- W4386525006 cites W4313016521 @default.
- W4386525006 cites W4379519626 @default.
- W4386525006 doi "https://doi.org/10.3390/math11183839" @default.
- W4386525006 hasPublicationYear "2023" @default.
- W4386525006 type Work @default.
- W4386525006 citedByCount "0" @default.
- W4386525006 crossrefType "journal-article" @default.
- W4386525006 hasAuthorship W4386525006A5009384804 @default.
- W4386525006 hasAuthorship W4386525006A5036010787 @default.
- W4386525006 hasAuthorship W4386525006A5039652471 @default.
- W4386525006 hasAuthorship W4386525006A5060504605 @default.
- W4386525006 hasAuthorship W4386525006A5063391988 @default.
- W4386525006 hasAuthorship W4386525006A5070319233 @default.
- W4386525006 hasBestOaLocation W43865250061 @default.
- W4386525006 hasConcept C105339364 @default.
- W4386525006 hasConcept C108583219 @default.
- W4386525006 hasConcept C111919701 @default.
- W4386525006 hasConcept C127413603 @default.
- W4386525006 hasConcept C146978453 @default.
- W4386525006 hasConcept C153180895 @default.
- W4386525006 hasConcept C154945302 @default.
- W4386525006 hasConcept C2776151529 @default.
- W4386525006 hasConcept C2781238097 @default.
- W4386525006 hasConcept C31972630 @default.
- W4386525006 hasConcept C41008148 @default.
- W4386525006 hasConcept C52121051 @default.
- W4386525006 hasConcept C81363708 @default.
- W4386525006 hasConceptScore W4386525006C105339364 @default.
- W4386525006 hasConceptScore W4386525006C108583219 @default.
- W4386525006 hasConceptScore W4386525006C111919701 @default.
- W4386525006 hasConceptScore W4386525006C127413603 @default.
- W4386525006 hasConceptScore W4386525006C146978453 @default.
- W4386525006 hasConceptScore W4386525006C153180895 @default.
- W4386525006 hasConceptScore W4386525006C154945302 @default.
- W4386525006 hasConceptScore W4386525006C2776151529 @default.
- W4386525006 hasConceptScore W4386525006C2781238097 @default.
- W4386525006 hasConceptScore W4386525006C31972630 @default.