Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386525598> ?p ?o ?g. }
- W4386525598 endingPage "20" @default.
- W4386525598 startingPage "1" @default.
- W4386525598 abstract "Summary The present study introduces an enhanced deep learning (DL) workflow based on transfer learning (TL) for producing high-resolution synthetic graphic well logs (SGWLs). To examine the scalability of the proposed workflow, a carbonate reservoir with a high geological heterogeneity has been chosen as the case study, and the developed workflow is evaluated on unseen data (i.e., blind well). Data sources include conventional well logs and graphical well logs (GWLs) from neighboring wells. During drilling operations, GWLs are standard practice for collecting data. GWL provides a rapid visual representation of subsurface lithofacies to establish geological correlations. This investigation examines five wells in a southwest Iranian oil field. Due to subsurface geological heterogeneities, the primary challenge of this research lies in addressing the imbalanced facies distribution. The traditional artificial intelligence strategies that manage imbalanced data [e.g., the modified synthetic minority oversampling technique (M-SMOTE) and Tomek link (TKL)] are mainly designed to solve binary problems. However, to adapt these methods to the upcoming imbalanced multiclass situation, one-vs.-one (OVO) and one-vs.-all (OVA) decomposition strategies and ad-hoc techniques are used. Well-known VGG16-1D and ResNet18-1D are used as adaptive very-deep algorithms. Additionally, to highlight the robustness and efficiency of these algorithms, shallow learning approaches of support vector machine (SVM) and random forest (RF) as conventional facies classification methods are also used. The other main challenge is the need for enough data points to train the very deep algorithms, resolved through TL. After identifying a blind well, the other four wells’ data are entered for model training. The average kappa statistic and F-measure, as appropriate imbalance data evaluation metrics, are implemented to assess the designed workflows’ performance. The numerical and visual comparison analysis shows that the VGG16-1D TL model performs better on the blind well data set when combined with the OVA scheme as a decomposition technique and TKL as a binary imbalance data combat tactic. An average kappa statistic of 86.33% and a mean F-measure of 92.09% demonstrate designed workflow superiority. Considering the prevalence of different imbalanced facies distributions, the developed scalable workflow can be efficient and productive for generating SGWL." @default.
- W4386525598 created "2023-09-08" @default.
- W4386525598 creator A5014933044 @default.
- W4386525598 creator A5030755238 @default.
- W4386525598 creator A5042982809 @default.
- W4386525598 creator A5059264887 @default.
- W4386525598 date "2023-09-01" @default.
- W4386525598 modified "2023-10-16" @default.
- W4386525598 title "Synthetic Graphic Well Log Generation Using an Enhanced Deep Learning Workflow: Imbalanced Multiclass Data, Sample Size, and Scalability Challenges" @default.
- W4386525598 cites W2299953952 @default.
- W4386525598 cites W2390764307 @default.
- W4386525598 cites W2591997534 @default.
- W4386525598 cites W2782133852 @default.
- W4386525598 cites W2791612536 @default.
- W4386525598 cites W2901691125 @default.
- W4386525598 cites W2982127094 @default.
- W4386525598 cites W2998365469 @default.
- W4386525598 cites W2999829553 @default.
- W4386525598 cites W3005069491 @default.
- W4386525598 cites W3008571545 @default.
- W4386525598 cites W3009384997 @default.
- W4386525598 cites W3012134571 @default.
- W4386525598 cites W3012833929 @default.
- W4386525598 cites W3016092709 @default.
- W4386525598 cites W3033495684 @default.
- W4386525598 cites W3038588235 @default.
- W4386525598 cites W3038818616 @default.
- W4386525598 cites W3045456820 @default.
- W4386525598 cites W3085605123 @default.
- W4386525598 cites W3090659357 @default.
- W4386525598 cites W3094589564 @default.
- W4386525598 cites W3096652138 @default.
- W4386525598 cites W3119391078 @default.
- W4386525598 cites W3119457337 @default.
- W4386525598 cites W3128470371 @default.
- W4386525598 cites W3158129787 @default.
- W4386525598 cites W3163694685 @default.
- W4386525598 cites W3184149319 @default.
- W4386525598 cites W3200684118 @default.
- W4386525598 cites W3201872403 @default.
- W4386525598 cites W3214325366 @default.
- W4386525598 cites W4200322801 @default.
- W4386525598 cites W4200343878 @default.
- W4386525598 cites W4206954892 @default.
- W4386525598 cites W4214856619 @default.
- W4386525598 cites W4220762983 @default.
- W4386525598 cites W4220838426 @default.
- W4386525598 cites W4220869228 @default.
- W4386525598 cites W4221155428 @default.
- W4386525598 cites W4225001889 @default.
- W4386525598 cites W4225010642 @default.
- W4386525598 cites W4226410056 @default.
- W4386525598 cites W4229335297 @default.
- W4386525598 cites W4229450480 @default.
- W4386525598 cites W4243367342 @default.
- W4386525598 cites W4280536070 @default.
- W4386525598 cites W4281770905 @default.
- W4386525598 cites W4283214869 @default.
- W4386525598 cites W4285006563 @default.
- W4386525598 cites W4285599838 @default.
- W4386525598 cites W4286219202 @default.
- W4386525598 cites W4289204962 @default.
- W4386525598 cites W4289755639 @default.
- W4386525598 cites W4292622404 @default.
- W4386525598 cites W4295021519 @default.
- W4386525598 cites W4296640253 @default.
- W4386525598 cites W4297200642 @default.
- W4386525598 cites W4302028668 @default.
- W4386525598 cites W4308841970 @default.
- W4386525598 cites W4309270060 @default.
- W4386525598 cites W4309892741 @default.
- W4386525598 cites W4310721002 @default.
- W4386525598 cites W4311341446 @default.
- W4386525598 cites W4311777786 @default.
- W4386525598 cites W4311902946 @default.
- W4386525598 cites W4316591683 @default.
- W4386525598 cites W4317521107 @default.
- W4386525598 cites W4318561787 @default.
- W4386525598 cites W4319996488 @default.
- W4386525598 cites W4323306727 @default.
- W4386525598 cites W4323363121 @default.
- W4386525598 cites W4327920700 @default.
- W4386525598 cites W4328137371 @default.
- W4386525598 cites W4366485332 @default.
- W4386525598 cites W4376253777 @default.
- W4386525598 cites W4380742308 @default.
- W4386525598 cites W4380758742 @default.
- W4386525598 cites W4380990714 @default.
- W4386525598 cites W4381888689 @default.
- W4386525598 cites W4383262642 @default.
- W4386525598 doi "https://doi.org/10.2118/217466-pa" @default.
- W4386525598 hasPublicationYear "2023" @default.
- W4386525598 type Work @default.
- W4386525598 citedByCount "0" @default.
- W4386525598 crossrefType "journal-article" @default.
- W4386525598 hasAuthorship W4386525598A5014933044 @default.
- W4386525598 hasAuthorship W4386525598A5030755238 @default.
- W4386525598 hasAuthorship W4386525598A5042982809 @default.