Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386532406> ?p ?o ?g. }
- W4386532406 endingPage "5763" @default.
- W4386532406 startingPage "5755" @default.
- W4386532406 abstract "New solid-state materials have been discovered using various approaches from atom substitution in density functional theory (DFT) to generative models in machine learning. Recently, generative models have shown promising performance in finding new materials. Crystal generation with deep learning has been applied in various methods to discover new crystals. However, most generative models can only be applied to materials with specific elements or generate structures with random compositions. In this work, we developed a model that can generate crystals with desired compositions based on a crystal diffusion variational autoencoder. We generated crystal structures for 14 compositions of three types of materials in different applications. The generated structures were further stabilized using DFT calculations. We found the most stable structures in the existing database for all but one composition, even though eight compositions among them were not in the data set trained in a crystal diffusion variational autoencoder. This substantiates the prospect of the generation of an extensive range of compositions. Finally, 205 unique new crystal materials with energy above hull <100 meV/atom were generated. Moreover, we compared the average formation energy of the crystals generated from five compositions, two of which were hypothetical, with that of traditional methods like atom substitution and a generative model. The generated structures had lower formation energy than those of other models, except for one composition. These results demonstrate that our approach can be applied stably in various fields to design stable inorganic materials based on machine learning." @default.
- W4386532406 created "2023-09-09" @default.
- W4386532406 creator A5018605846 @default.
- W4386532406 creator A5023852445 @default.
- W4386532406 creator A5037007563 @default.
- W4386532406 creator A5051256159 @default.
- W4386532406 creator A5072167726 @default.
- W4386532406 creator A5087191065 @default.
- W4386532406 date "2023-09-08" @default.
- W4386532406 modified "2023-09-27" @default.
- W4386532406 title "Design of New Inorganic Crystals with the Desired Composition Using Deep Learning" @default.
- W4386532406 cites W1976492731 @default.
- W4386532406 cites W1979544533 @default.
- W4386532406 cites W1992985800 @default.
- W4386532406 cites W1998010646 @default.
- W4386532406 cites W2015197254 @default.
- W4386532406 cites W2024048721 @default.
- W4386532406 cites W2026444402 @default.
- W4386532406 cites W2065905435 @default.
- W4386532406 cites W2075946504 @default.
- W4386532406 cites W2083222334 @default.
- W4386532406 cites W2112845989 @default.
- W4386532406 cites W2157058142 @default.
- W4386532406 cites W2294798173 @default.
- W4386532406 cites W2322384972 @default.
- W4386532406 cites W2327716089 @default.
- W4386532406 cites W2531602199 @default.
- W4386532406 cites W2624244786 @default.
- W4386532406 cites W2894002898 @default.
- W4386532406 cites W2968819590 @default.
- W4386532406 cites W2979285519 @default.
- W4386532406 cites W2982327193 @default.
- W4386532406 cites W2997100726 @default.
- W4386532406 cites W2998678775 @default.
- W4386532406 cites W3016719477 @default.
- W4386532406 cites W3041603413 @default.
- W4386532406 cites W3082575732 @default.
- W4386532406 cites W3098269892 @default.
- W4386532406 cites W3199332926 @default.
- W4386532406 cites W4224211223 @default.
- W4386532406 cites W4226198073 @default.
- W4386532406 cites W4308799019 @default.
- W4386532406 cites W4312933868 @default.
- W4386532406 cites W4318484114 @default.
- W4386532406 doi "https://doi.org/10.1021/acs.jcim.3c00935" @default.
- W4386532406 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37683188" @default.
- W4386532406 hasPublicationYear "2023" @default.
- W4386532406 type Work @default.
- W4386532406 citedByCount "0" @default.
- W4386532406 crossrefType "journal-article" @default.
- W4386532406 hasAuthorship W4386532406A5018605846 @default.
- W4386532406 hasAuthorship W4386532406A5023852445 @default.
- W4386532406 hasAuthorship W4386532406A5037007563 @default.
- W4386532406 hasAuthorship W4386532406A5051256159 @default.
- W4386532406 hasAuthorship W4386532406A5072167726 @default.
- W4386532406 hasAuthorship W4386532406A5087191065 @default.
- W4386532406 hasConcept C101738243 @default.
- W4386532406 hasConcept C108583219 @default.
- W4386532406 hasConcept C11413529 @default.
- W4386532406 hasConcept C115624301 @default.
- W4386532406 hasConcept C121332964 @default.
- W4386532406 hasConcept C121864883 @default.
- W4386532406 hasConcept C138885662 @default.
- W4386532406 hasConcept C149635348 @default.
- W4386532406 hasConcept C154945302 @default.
- W4386532406 hasConcept C159985019 @default.
- W4386532406 hasConcept C167966045 @default.
- W4386532406 hasConcept C185592680 @default.
- W4386532406 hasConcept C186060115 @default.
- W4386532406 hasConcept C192562407 @default.
- W4386532406 hasConcept C199360897 @default.
- W4386532406 hasConcept C204323151 @default.
- W4386532406 hasConcept C2781285689 @default.
- W4386532406 hasConcept C39890363 @default.
- W4386532406 hasConcept C40231798 @default.
- W4386532406 hasConcept C41008148 @default.
- W4386532406 hasConcept C41895202 @default.
- W4386532406 hasConcept C58312451 @default.
- W4386532406 hasConcept C69357855 @default.
- W4386532406 hasConcept C8010536 @default.
- W4386532406 hasConcept C84947059 @default.
- W4386532406 hasConcept C86803240 @default.
- W4386532406 hasConcept C97355855 @default.
- W4386532406 hasConceptScore W4386532406C101738243 @default.
- W4386532406 hasConceptScore W4386532406C108583219 @default.
- W4386532406 hasConceptScore W4386532406C11413529 @default.
- W4386532406 hasConceptScore W4386532406C115624301 @default.
- W4386532406 hasConceptScore W4386532406C121332964 @default.
- W4386532406 hasConceptScore W4386532406C121864883 @default.
- W4386532406 hasConceptScore W4386532406C138885662 @default.
- W4386532406 hasConceptScore W4386532406C149635348 @default.
- W4386532406 hasConceptScore W4386532406C154945302 @default.
- W4386532406 hasConceptScore W4386532406C159985019 @default.
- W4386532406 hasConceptScore W4386532406C167966045 @default.
- W4386532406 hasConceptScore W4386532406C185592680 @default.
- W4386532406 hasConceptScore W4386532406C186060115 @default.
- W4386532406 hasConceptScore W4386532406C192562407 @default.
- W4386532406 hasConceptScore W4386532406C199360897 @default.