Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386537710> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4386537710 endingPage "ii105" @default.
- W4386537710 startingPage "ii105" @default.
- W4386537710 abstract "Abstract BACKGROUND A high Ki-67 index usually suggests accelerated cell proliferation of meningioma related to significant tumor growth as well as increased recurrent risk. This study aimed to explore the feasibility of deep learning method in predicting Ki-67 index of meningiomas with multi-modal information. MATERIAL AND METHODS Pre-treatment magnetic resonance images were retrospectively curated from 521 patients with surgically resected, pathologically confirmed meningiomas from three institutions. The cases were classified into low-expressed or high-expressed groups with a threshold of 5% of Ki-67 index. Predictive models were developed with multi-modal deep learning network by using traditional radiological findings, radiomics features extracted from tumors, and MRIs of meningiomas. The performance of the models was evaluated with area under curve (AUC), accuracy (ACC), sensitivity, and specificity. In addition, 127 cases with incidental small meningioma were recruited and followed up in 2 years, to investigate if the model could be used for predicting the tumor growth to assist in patient management. RESULTS Overall, 371 patients were enrolled for model development and primary analysis. The predictive model showed good performance with AUC of 0.798, ACC of 0.710, sensitivity of 0.613, and specificity of 0.806 in the internal test. It also achieved robustness in the external test cohort consisted of 150 cases, with AUC of 0.758, ACC of 0.661, sensitivity of 0.677, and specificity of 0.645. Moreover, model-predicted high Ki-67 tumor was associated with significant tumor volume growth happened in two years. CONCLUSION The predictive model can efficiently predict the Ki-67 index in meningioma patients, and showed good potential in facilitating the therapeutic decisions." @default.
- W4386537710 created "2023-09-09" @default.
- W4386537710 creator A5011130572 @default.
- W4386537710 creator A5063253432 @default.
- W4386537710 date "2023-09-01" @default.
- W4386537710 modified "2023-10-16" @default.
- W4386537710 title "P13.17.B PREDICTING KI-67 PROLIFERATION INDEX OF MENINGIOMAS ON MRI: A DEEP LEARNING METHOD BASED ON MULTI-MODAL INFORMATION" @default.
- W4386537710 doi "https://doi.org/10.1093/neuonc/noad137.351" @default.
- W4386537710 hasPublicationYear "2023" @default.
- W4386537710 type Work @default.
- W4386537710 citedByCount "0" @default.
- W4386537710 crossrefType "journal-article" @default.
- W4386537710 hasAuthorship W4386537710A5011130572 @default.
- W4386537710 hasAuthorship W4386537710A5063253432 @default.
- W4386537710 hasConcept C126322002 @default.
- W4386537710 hasConcept C126838900 @default.
- W4386537710 hasConcept C143409427 @default.
- W4386537710 hasConcept C185592680 @default.
- W4386537710 hasConcept C188027245 @default.
- W4386537710 hasConcept C204232928 @default.
- W4386537710 hasConcept C2777751288 @default.
- W4386537710 hasConcept C2778559731 @default.
- W4386537710 hasConcept C2779160599 @default.
- W4386537710 hasConcept C2910938049 @default.
- W4386537710 hasConcept C2989005 @default.
- W4386537710 hasConcept C71139939 @default.
- W4386537710 hasConcept C71924100 @default.
- W4386537710 hasConcept C72563966 @default.
- W4386537710 hasConceptScore W4386537710C126322002 @default.
- W4386537710 hasConceptScore W4386537710C126838900 @default.
- W4386537710 hasConceptScore W4386537710C143409427 @default.
- W4386537710 hasConceptScore W4386537710C185592680 @default.
- W4386537710 hasConceptScore W4386537710C188027245 @default.
- W4386537710 hasConceptScore W4386537710C204232928 @default.
- W4386537710 hasConceptScore W4386537710C2777751288 @default.
- W4386537710 hasConceptScore W4386537710C2778559731 @default.
- W4386537710 hasConceptScore W4386537710C2779160599 @default.
- W4386537710 hasConceptScore W4386537710C2910938049 @default.
- W4386537710 hasConceptScore W4386537710C2989005 @default.
- W4386537710 hasConceptScore W4386537710C71139939 @default.
- W4386537710 hasConceptScore W4386537710C71924100 @default.
- W4386537710 hasConceptScore W4386537710C72563966 @default.
- W4386537710 hasIssue "Supplement_2" @default.
- W4386537710 hasLocation W43865377101 @default.
- W4386537710 hasOpenAccess W4386537710 @default.
- W4386537710 hasPrimaryLocation W43865377101 @default.
- W4386537710 hasRelatedWork W105088528 @default.
- W4386537710 hasRelatedWork W1554006475 @default.
- W4386537710 hasRelatedWork W1992938790 @default.
- W4386537710 hasRelatedWork W1999169732 @default.
- W4386537710 hasRelatedWork W2063604366 @default.
- W4386537710 hasRelatedWork W2443936792 @default.
- W4386537710 hasRelatedWork W2802533795 @default.
- W4386537710 hasRelatedWork W2807932567 @default.
- W4386537710 hasRelatedWork W4366299332 @default.
- W4386537710 hasRelatedWork W1995048828 @default.
- W4386537710 hasVolume "25" @default.
- W4386537710 isParatext "false" @default.
- W4386537710 isRetracted "false" @default.
- W4386537710 workType "article" @default.