Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386543287> ?p ?o ?g. }
- W4386543287 endingPage "10384" @default.
- W4386543287 startingPage "10378" @default.
- W4386543287 abstract "The quest for generating novel chemistry knowledge is critical in scientific advancement, and machine learning (ML) has emerged as an asset in this pursuit. Through interpolation among learned patterns, ML can tackle tasks that were previously deemed demanding to machines. This distinctive capacity of ML provides invaluable aid to bench chemists in their daily work. However, current ML tools are typically designed to prioritize experiments with the highest likelihood of success, i.e., higher predictive confidence. In this perspective, we build on current trends that suggest a future in which ML could be just as beneficial in exploring uncharted search spaces through simulated curiosity. We discuss how low and 'negative' data can catalyse one-/few-shot learning, and how the broader use of curious ML and novelty detection algorithms can propel the next wave of chemical discoveries. We anticipate that ML for curiosity-driven research will help the community overcome potentially biased assumptions and uncover unexpected findings in the chemical sciences at an accelerated pace." @default.
- W4386543287 created "2023-09-09" @default.
- W4386543287 creator A5022570050 @default.
- W4386543287 creator A5080069398 @default.
- W4386543287 creator A5082017604 @default.
- W4386543287 date "2023-01-01" @default.
- W4386543287 modified "2023-10-07" @default.
- W4386543287 title "The rise of automated curiosity-driven discoveries in chemistry" @default.
- W4386543287 cites W1965422269 @default.
- W4386543287 cites W1991463958 @default.
- W4386543287 cites W2067253662 @default.
- W4386543287 cites W2068207234 @default.
- W4386543287 cites W2072596720 @default.
- W4386543287 cites W2090734571 @default.
- W4386543287 cites W2125782931 @default.
- W4386543287 cites W2154708789 @default.
- W4386543287 cites W2527653252 @default.
- W4386543287 cites W2565684601 @default.
- W4386543287 cites W2747592475 @default.
- W4386543287 cites W2769423117 @default.
- W4386543287 cites W2883307410 @default.
- W4386543287 cites W2908837618 @default.
- W4386543287 cites W2944974555 @default.
- W4386543287 cites W2965877034 @default.
- W4386543287 cites W2971690404 @default.
- W4386543287 cites W2972597827 @default.
- W4386543287 cites W2997234557 @default.
- W4386543287 cites W3011286504 @default.
- W4386543287 cites W3026180388 @default.
- W4386543287 cites W3031363365 @default.
- W4386543287 cites W3044338806 @default.
- W4386543287 cites W3103599793 @default.
- W4386543287 cites W3113626051 @default.
- W4386543287 cites W3152499390 @default.
- W4386543287 cites W3155214885 @default.
- W4386543287 cites W3156894194 @default.
- W4386543287 cites W3183861986 @default.
- W4386543287 cites W3200979355 @default.
- W4386543287 cites W3202221626 @default.
- W4386543287 cites W3205597769 @default.
- W4386543287 cites W4200463400 @default.
- W4386543287 cites W4220670676 @default.
- W4386543287 cites W4221145756 @default.
- W4386543287 cites W4223419210 @default.
- W4386543287 cites W4225986554 @default.
- W4386543287 cites W4229044212 @default.
- W4386543287 cites W4283367795 @default.
- W4386543287 cites W4285993131 @default.
- W4386543287 cites W4293257826 @default.
- W4386543287 cites W4296551289 @default.
- W4386543287 cites W4304203195 @default.
- W4386543287 cites W4307055577 @default.
- W4386543287 cites W4309326938 @default.
- W4386543287 cites W4310603653 @default.
- W4386543287 cites W4311415873 @default.
- W4386543287 cites W4311436943 @default.
- W4386543287 cites W4313485037 @default.
- W4386543287 cites W4313545395 @default.
- W4386543287 cites W4316928225 @default.
- W4386543287 cites W4320494948 @default.
- W4386543287 cites W4321480048 @default.
- W4386543287 cites W4324122028 @default.
- W4386543287 cites W4367048706 @default.
- W4386543287 cites W4375856225 @default.
- W4386543287 cites W4386287987 @default.
- W4386543287 doi "https://doi.org/10.1039/d3sc03367h" @default.
- W4386543287 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37799997" @default.
- W4386543287 hasPublicationYear "2023" @default.
- W4386543287 type Work @default.
- W4386543287 citedByCount "0" @default.
- W4386543287 crossrefType "journal-article" @default.
- W4386543287 hasAuthorship W4386543287A5022570050 @default.
- W4386543287 hasAuthorship W4386543287A5080069398 @default.
- W4386543287 hasAuthorship W4386543287A5082017604 @default.
- W4386543287 hasBestOaLocation W43865432871 @default.
- W4386543287 hasConcept C12713177 @default.
- W4386543287 hasConcept C13280743 @default.
- W4386543287 hasConcept C154945302 @default.
- W4386543287 hasConcept C15744967 @default.
- W4386543287 hasConcept C205649164 @default.
- W4386543287 hasConcept C2522767166 @default.
- W4386543287 hasConcept C2777526511 @default.
- W4386543287 hasConcept C2778738651 @default.
- W4386543287 hasConcept C33435437 @default.
- W4386543287 hasConcept C41008148 @default.
- W4386543287 hasConcept C77805123 @default.
- W4386543287 hasConceptScore W4386543287C12713177 @default.
- W4386543287 hasConceptScore W4386543287C13280743 @default.
- W4386543287 hasConceptScore W4386543287C154945302 @default.
- W4386543287 hasConceptScore W4386543287C15744967 @default.
- W4386543287 hasConceptScore W4386543287C205649164 @default.
- W4386543287 hasConceptScore W4386543287C2522767166 @default.
- W4386543287 hasConceptScore W4386543287C2777526511 @default.
- W4386543287 hasConceptScore W4386543287C2778738651 @default.
- W4386543287 hasConceptScore W4386543287C33435437 @default.
- W4386543287 hasConceptScore W4386543287C41008148 @default.
- W4386543287 hasConceptScore W4386543287C77805123 @default.
- W4386543287 hasFunder F4320338439 @default.