Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386543826> ?p ?o ?g. }
- W4386543826 endingPage "128437" @default.
- W4386543826 startingPage "128437" @default.
- W4386543826 abstract "Titanium and titanium alloy materials are often made as medical implants. Surface properties of titanium medical implants play decisive roles for antibacterial and biological response and tissue biocompatibility. In this study, cathode arc evaporation (CAE) technology was used to deposit TiNb–Zr–Ta and nitrogen-doped TiNb–Zr–Ta coatings with nanostructures on the Ti–6Al–4V dental abutment screws. The deposited coatings were then oxidized at high temperature to produce different oxides on the surface of the coatings. The mechanical properties, antibacterial properties and biocompatibilities of the coatings were analyzed. The effect of coatings on the abutment screw loosening and removal torque between the abutment screw and the pure titanium implant fixture was studied by removal torque measurement. In addition, Staphylococcus aureus (S. aureus) was used for evaluating the antibacterial properties of coatings, and mouse fibroblasts (L929) were used for ISO 10993-5 cytotoxicity analyses to determine whether it had good biocompatibility. Nanolayered structures and multiphases of polycrystalline TiNb–Zr–Ta were obtained by co-deposition of Ta, Zr and TiNb. When small content of N was introduced, the TiNb–Zr–Ta(N) showed a polycrystalline TiNb–Zr–Ta where N atoms entered the metallic lattice at interstitial sites. After oxidation, oxide phases of Ta2O5, TiO2, Nb2O5 and ZrO2 were formed on the surface of TiNb–Zr–Ta and TiNb–Zr–Ta(N). Ta2O5 was obtained on the surface of the coating prior to other oxides such as TiO2, Nb2O5 and ZrO2. The deposited TiNb–Zr–Ta and TiNb–Zr–Ta(N) coatings had high contact angle and exhibited a hydrophobic feature, while the annealed TiNb–Zr–Ta–O and TiNb–Zr–Ta(N)–O showed hydrophilicity. The deposited TiNb–Zr–Ta had similar hardness and Young's modulus values to that of the uncoated Ti–6Al–4V. When N was doped, the TiNb–Zr–Ta(N) had the highest hardness and Young's modulus. The hardness of the annealed TiNb–Zr–Ta(N) coating only decreased slightly due to the small oxide layer of ∼140 nm. Compared with the uncoated Ti–6Al–4V, TiNb–Zr–Ta serial coatings deposited on abutment screws had higher removal torques, which prevented the abutment screw of dental implant from loosening after long-term use. The biocompatibility of TiNb–Zr–Ta serial coatings was similar to that of the uncoated Ti–6Al–4V. In addition, the oxidized TiNb–Zr–Ta and TiNb–Zr–Ta(N) coatings had excellent antibacterial properties. It is speculated that the resulting Ta2O5 of both coatings may inhibit bacterial growth and improve the antibacterial effect. Based on the above advantages, the TiNb–Zr–Ta serial coatings are expected to have the potential to be applied to biomedical implants." @default.
- W4386543826 created "2023-09-09" @default.
- W4386543826 creator A5031246835 @default.
- W4386543826 creator A5037615733 @default.
- W4386543826 creator A5054961039 @default.
- W4386543826 creator A5055363528 @default.
- W4386543826 creator A5080745203 @default.
- W4386543826 date "2023-11-01" @default.
- W4386543826 modified "2023-10-09" @default.
- W4386543826 title "Mechanical, antibacterial and cytotoxic characteristics of nanolayered TiNb–Zr–Ta and nitrogen-doped TiNb–Zr–Ta coatings" @default.
- W4386543826 cites W1980712409 @default.
- W4386543826 cites W1999134787 @default.
- W4386543826 cites W2011979465 @default.
- W4386543826 cites W2025958721 @default.
- W4386543826 cites W2029962027 @default.
- W4386543826 cites W2043567740 @default.
- W4386543826 cites W2070289111 @default.
- W4386543826 cites W2088618061 @default.
- W4386543826 cites W2090178892 @default.
- W4386543826 cites W2091092016 @default.
- W4386543826 cites W2141051345 @default.
- W4386543826 cites W2141080127 @default.
- W4386543826 cites W2154907837 @default.
- W4386543826 cites W2170590254 @default.
- W4386543826 cites W2289453950 @default.
- W4386543826 cites W2736277119 @default.
- W4386543826 cites W2751580953 @default.
- W4386543826 cites W2783943878 @default.
- W4386543826 cites W2790152912 @default.
- W4386543826 cites W2893226650 @default.
- W4386543826 cites W2901329785 @default.
- W4386543826 cites W2913078536 @default.
- W4386543826 cites W2943683143 @default.
- W4386543826 cites W2947536632 @default.
- W4386543826 cites W2964732073 @default.
- W4386543826 cites W2996584703 @default.
- W4386543826 cites W2997698902 @default.
- W4386543826 cites W3000032942 @default.
- W4386543826 cites W3009564547 @default.
- W4386543826 cites W3020094748 @default.
- W4386543826 cites W3093492320 @default.
- W4386543826 cites W3094016737 @default.
- W4386543826 cites W3108348497 @default.
- W4386543826 cites W3119498737 @default.
- W4386543826 cites W3127321441 @default.
- W4386543826 cites W3136732903 @default.
- W4386543826 cites W3163198719 @default.
- W4386543826 cites W3183947944 @default.
- W4386543826 cites W3208946853 @default.
- W4386543826 cites W3213670003 @default.
- W4386543826 cites W3214415048 @default.
- W4386543826 cites W3214508584 @default.
- W4386543826 cites W4206726179 @default.
- W4386543826 cites W4212912304 @default.
- W4386543826 cites W4280639122 @default.
- W4386543826 doi "https://doi.org/10.1016/j.matchemphys.2023.128437" @default.
- W4386543826 hasPublicationYear "2023" @default.
- W4386543826 type Work @default.
- W4386543826 citedByCount "0" @default.
- W4386543826 crossrefType "journal-article" @default.
- W4386543826 hasAuthorship W4386543826A5031246835 @default.
- W4386543826 hasAuthorship W4386543826A5037615733 @default.
- W4386543826 hasAuthorship W4386543826A5054961039 @default.
- W4386543826 hasAuthorship W4386543826A5055363528 @default.
- W4386543826 hasAuthorship W4386543826A5080745203 @default.
- W4386543826 hasConcept C137637335 @default.
- W4386543826 hasConcept C159985019 @default.
- W4386543826 hasConcept C191897082 @default.
- W4386543826 hasConcept C192562407 @default.
- W4386543826 hasConcept C2777230088 @default.
- W4386543826 hasConcept C2780026712 @default.
- W4386543826 hasConcept C506065880 @default.
- W4386543826 hasConcept C8953137 @default.
- W4386543826 hasConceptScore W4386543826C137637335 @default.
- W4386543826 hasConceptScore W4386543826C159985019 @default.
- W4386543826 hasConceptScore W4386543826C191897082 @default.
- W4386543826 hasConceptScore W4386543826C192562407 @default.
- W4386543826 hasConceptScore W4386543826C2777230088 @default.
- W4386543826 hasConceptScore W4386543826C2780026712 @default.
- W4386543826 hasConceptScore W4386543826C506065880 @default.
- W4386543826 hasConceptScore W4386543826C8953137 @default.
- W4386543826 hasFunder F4320322795 @default.
- W4386543826 hasFunder F4320324301 @default.
- W4386543826 hasLocation W43865438261 @default.
- W4386543826 hasOpenAccess W4386543826 @default.
- W4386543826 hasPrimaryLocation W43865438261 @default.
- W4386543826 hasRelatedWork W1964194565 @default.
- W4386543826 hasRelatedWork W2031574377 @default.
- W4386543826 hasRelatedWork W2113455936 @default.
- W4386543826 hasRelatedWork W2365560514 @default.
- W4386543826 hasRelatedWork W2393417063 @default.
- W4386543826 hasRelatedWork W2393655250 @default.
- W4386543826 hasRelatedWork W2414282704 @default.
- W4386543826 hasRelatedWork W2561756220 @default.
- W4386543826 hasRelatedWork W3096312914 @default.
- W4386543826 hasRelatedWork W341228048 @default.
- W4386543826 hasVolume "309" @default.
- W4386543826 isParatext "false" @default.