Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386561346> ?p ?o ?g. }
- W4386561346 abstract "Abstract Accurate prognostic prediction is crucial for treatment decision-making in lung papillary adenocarcinoma (LPADC). The aim of this study was to predict cancer-specific survival in LPADC using ensemble machine learning and classical Cox regression models. Moreover, models were evaluated to provide recommendations based on quantitative data for personalized treatment of LPADC. Data of patients diagnosed with LPADC (2004–2018) were extracted from the Surveillance, Epidemiology, and End Results database. The set of samples was randomly divided into the training and validation sets at a ratio of 7:3. Three ensemble models were selected, namely gradient boosting survival (GBS), random survival forest (RSF), and extra survival trees (EST). In addition, Cox proportional hazards (CoxPH) regression was used to construct the prognostic models. The Harrell’s concordance index (C-index), integrated Brier score (IBS), and area under the time-dependent receiver operating characteristic curve (time-dependent AUC) were used to evaluate the performance of the predictive models. A user-friendly web access panel was provided to easily evaluate the model for the prediction of survival and treatment recommendations. A total of 3615 patients were randomly divided into the training and validation cohorts (n = 2530 and 1085, respectively). The extra survival trees, RSF, GBS, and CoxPH models showed good discriminative ability and calibration in both the training and validation cohorts (mean of time-dependent AUC: > 0.84 and > 0.82; C-index: > 0.79 and > 0.77; IBS: < 0.16 and < 0.17, respectively). The RSF and GBS models were more consistent than the CoxPH model in predicting long-term survival. We implemented the developed models as web applications for deployment into clinical practice (accessible through https://shinyshine-820-lpaprediction-model-z3ubbu.streamlit.app/ ). All four prognostic models showed good discriminative ability and calibration. The RSF and GBS models exhibited the highest effectiveness among all models in predicting the long-term cancer-specific survival of patients with LPADC. This approach may facilitate the development of personalized treatment plans and prediction of prognosis for LPADC." @default.
- W4386561346 created "2023-09-09" @default.
- W4386561346 creator A5014995927 @default.
- W4386561346 creator A5020566871 @default.
- W4386561346 creator A5027749911 @default.
- W4386561346 creator A5041697673 @default.
- W4386561346 creator A5076207558 @default.
- W4386561346 date "2023-09-08" @default.
- W4386561346 modified "2023-10-18" @default.
- W4386561346 title "Prediction of lung papillary adenocarcinoma-specific survival using ensemble machine learning models" @default.
- W4386561346 cites W1979453200 @default.
- W4386561346 cites W2006940889 @default.
- W4386561346 cites W2029188334 @default.
- W4386561346 cites W2034791851 @default.
- W4386561346 cites W2044702943 @default.
- W4386561346 cites W2084139018 @default.
- W4386561346 cites W2133650808 @default.
- W4386561346 cites W2316733853 @default.
- W4386561346 cites W2773197674 @default.
- W4386561346 cites W2803660715 @default.
- W4386561346 cites W2884546347 @default.
- W4386561346 cites W2977436523 @default.
- W4386561346 cites W2982092233 @default.
- W4386561346 cites W3007302839 @default.
- W4386561346 cites W3031635948 @default.
- W4386561346 cites W3090317061 @default.
- W4386561346 cites W3099478002 @default.
- W4386561346 cites W3128646645 @default.
- W4386561346 cites W3137102918 @default.
- W4386561346 cites W3182238215 @default.
- W4386561346 cites W3215921195 @default.
- W4386561346 cites W4233026002 @default.
- W4386561346 cites W4245879305 @default.
- W4386561346 cites W4246259708 @default.
- W4386561346 cites W4283809060 @default.
- W4386561346 cites W4292567090 @default.
- W4386561346 cites W4292583132 @default.
- W4386561346 cites W4296353943 @default.
- W4386561346 cites W4304165981 @default.
- W4386561346 doi "https://doi.org/10.1038/s41598-023-40779-1" @default.
- W4386561346 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37684259" @default.
- W4386561346 hasPublicationYear "2023" @default.
- W4386561346 type Work @default.
- W4386561346 citedByCount "0" @default.
- W4386561346 crossrefType "journal-article" @default.
- W4386561346 hasAuthorship W4386561346A5014995927 @default.
- W4386561346 hasAuthorship W4386561346A5020566871 @default.
- W4386561346 hasAuthorship W4386561346A5027749911 @default.
- W4386561346 hasAuthorship W4386561346A5041697673 @default.
- W4386561346 hasAuthorship W4386561346A5076207558 @default.
- W4386561346 hasBestOaLocation W43865613461 @default.
- W4386561346 hasConcept C10515644 @default.
- W4386561346 hasConcept C105795698 @default.
- W4386561346 hasConcept C107038049 @default.
- W4386561346 hasConcept C119043178 @default.
- W4386561346 hasConcept C119857082 @default.
- W4386561346 hasConcept C119898033 @default.
- W4386561346 hasConcept C121608353 @default.
- W4386561346 hasConcept C126322002 @default.
- W4386561346 hasConcept C136764020 @default.
- W4386561346 hasConcept C138885662 @default.
- W4386561346 hasConcept C143998085 @default.
- W4386561346 hasConcept C154945302 @default.
- W4386561346 hasConcept C160798450 @default.
- W4386561346 hasConcept C169258074 @default.
- W4386561346 hasConcept C2779466056 @default.
- W4386561346 hasConcept C2781182431 @default.
- W4386561346 hasConcept C33923547 @default.
- W4386561346 hasConcept C35405484 @default.
- W4386561346 hasConcept C37616216 @default.
- W4386561346 hasConcept C41008148 @default.
- W4386561346 hasConcept C45804977 @default.
- W4386561346 hasConcept C45942800 @default.
- W4386561346 hasConcept C46686674 @default.
- W4386561346 hasConcept C50382708 @default.
- W4386561346 hasConcept C58471807 @default.
- W4386561346 hasConcept C70153297 @default.
- W4386561346 hasConcept C71924100 @default.
- W4386561346 hasConcept C84525736 @default.
- W4386561346 hasConcept C97931131 @default.
- W4386561346 hasConceptScore W4386561346C10515644 @default.
- W4386561346 hasConceptScore W4386561346C105795698 @default.
- W4386561346 hasConceptScore W4386561346C107038049 @default.
- W4386561346 hasConceptScore W4386561346C119043178 @default.
- W4386561346 hasConceptScore W4386561346C119857082 @default.
- W4386561346 hasConceptScore W4386561346C119898033 @default.
- W4386561346 hasConceptScore W4386561346C121608353 @default.
- W4386561346 hasConceptScore W4386561346C126322002 @default.
- W4386561346 hasConceptScore W4386561346C136764020 @default.
- W4386561346 hasConceptScore W4386561346C138885662 @default.
- W4386561346 hasConceptScore W4386561346C143998085 @default.
- W4386561346 hasConceptScore W4386561346C154945302 @default.
- W4386561346 hasConceptScore W4386561346C160798450 @default.
- W4386561346 hasConceptScore W4386561346C169258074 @default.
- W4386561346 hasConceptScore W4386561346C2779466056 @default.
- W4386561346 hasConceptScore W4386561346C2781182431 @default.
- W4386561346 hasConceptScore W4386561346C33923547 @default.
- W4386561346 hasConceptScore W4386561346C35405484 @default.
- W4386561346 hasConceptScore W4386561346C37616216 @default.
- W4386561346 hasConceptScore W4386561346C41008148 @default.