Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386561978> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4386561978 endingPage "e0288935" @default.
- W4386561978 startingPage "e0288935" @default.
- W4386561978 abstract "Accurately predicting mobile network traffic can help mobile network operators allocate resources more rationally and can facilitate stable and fast network services to users. However, due to burstiness and uncertainty, it is difficult to accurately predict network traffic.Considering the spatio-temporal correlation of network traffic, we proposed a deep-learning model, Convolutional Block Attention Module (CBAM) Spatio-Temporal Convolution Network-Transformer, for time-series prediction based on a CBAM attention mechanism, a Temporal Convolutional Network (TCN), and Transformer with a sparse self-attention mechanism. The model can be used to extract the spatio-temporal features of network traffic for prediction. First, we used the improved TCN for spatial information and added the CBAM attention mechanism, which we named CSTCN. This model dealt with important temporal and spatial features in network traffic. Second, Transformer was used to extract spatio-temporal features based on the sparse self-attention mechanism. The experiments in comparison with the baseline showed that the above work helped significantly to improve the prediction accuracy. We conducted experiments on a real network traffic dataset in the city of Milan.The results showed that CSTCN-Transformer reduced the mean square error and the mean average error of prediction results by 65.16%, 64.97%, and 60.26%, and by 51.36%, 53.10%, and 38.24%, respectively, compared to CSTCN, a Long Short-Term Memory network, and Transformer on test sets, which justified the model design in this paper." @default.
- W4386561978 created "2023-09-10" @default.
- W4386561978 creator A5019005078 @default.
- W4386561978 creator A5046834930 @default.
- W4386561978 creator A5058891349 @default.
- W4386561978 creator A5065015094 @default.
- W4386561978 date "2023-09-08" @default.
- W4386561978 modified "2023-09-29" @default.
- W4386561978 title "A novel hybrid framework based on temporal convolution network and transformer for network traffic prediction" @default.
- W4386561978 cites W2017807084 @default.
- W4386561978 cites W2078099808 @default.
- W4386561978 cites W2118023920 @default.
- W4386561978 cites W2190432600 @default.
- W4386561978 cites W2194775991 @default.
- W4386561978 cites W2321564642 @default.
- W4386561978 cites W2884585870 @default.
- W4386561978 cites W2900749811 @default.
- W4386561978 cites W2909976513 @default.
- W4386561978 cites W2962949934 @default.
- W4386561978 cites W3005623292 @default.
- W4386561978 cites W3089354057 @default.
- W4386561978 cites W3112139896 @default.
- W4386561978 cites W3131500599 @default.
- W4386561978 cites W3189556250 @default.
- W4386561978 cites W4224242856 @default.
- W4386561978 cites W4292262737 @default.
- W4386561978 cites W4297423466 @default.
- W4386561978 cites W4313004671 @default.
- W4386561978 doi "https://doi.org/10.1371/journal.pone.0288935" @default.
- W4386561978 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37682829" @default.
- W4386561978 hasPublicationYear "2023" @default.
- W4386561978 type Work @default.
- W4386561978 citedByCount "0" @default.
- W4386561978 crossrefType "journal-article" @default.
- W4386561978 hasAuthorship W4386561978A5019005078 @default.
- W4386561978 hasAuthorship W4386561978A5046834930 @default.
- W4386561978 hasAuthorship W4386561978A5058891349 @default.
- W4386561978 hasAuthorship W4386561978A5065015094 @default.
- W4386561978 hasBestOaLocation W43865619781 @default.
- W4386561978 hasConcept C105795698 @default.
- W4386561978 hasConcept C119599485 @default.
- W4386561978 hasConcept C124101348 @default.
- W4386561978 hasConcept C127413603 @default.
- W4386561978 hasConcept C139945424 @default.
- W4386561978 hasConcept C154945302 @default.
- W4386561978 hasConcept C165801399 @default.
- W4386561978 hasConcept C33923547 @default.
- W4386561978 hasConcept C41008148 @default.
- W4386561978 hasConcept C66322947 @default.
- W4386561978 hasConceptScore W4386561978C105795698 @default.
- W4386561978 hasConceptScore W4386561978C119599485 @default.
- W4386561978 hasConceptScore W4386561978C124101348 @default.
- W4386561978 hasConceptScore W4386561978C127413603 @default.
- W4386561978 hasConceptScore W4386561978C139945424 @default.
- W4386561978 hasConceptScore W4386561978C154945302 @default.
- W4386561978 hasConceptScore W4386561978C165801399 @default.
- W4386561978 hasConceptScore W4386561978C33923547 @default.
- W4386561978 hasConceptScore W4386561978C41008148 @default.
- W4386561978 hasConceptScore W4386561978C66322947 @default.
- W4386561978 hasFunder F4320321001 @default.
- W4386561978 hasFunder F4320335787 @default.
- W4386561978 hasIssue "9" @default.
- W4386561978 hasLocation W43865619781 @default.
- W4386561978 hasLocation W43865619782 @default.
- W4386561978 hasOpenAccess W4386561978 @default.
- W4386561978 hasPrimaryLocation W43865619781 @default.
- W4386561978 hasRelatedWork W2105559915 @default.
- W4386561978 hasRelatedWork W2347219288 @default.
- W4386561978 hasRelatedWork W2366221835 @default.
- W4386561978 hasRelatedWork W2390279801 @default.
- W4386561978 hasRelatedWork W2748952813 @default.
- W4386561978 hasRelatedWork W2899084033 @default.
- W4386561978 hasRelatedWork W2965508310 @default.
- W4386561978 hasRelatedWork W2995227436 @default.
- W4386561978 hasRelatedWork W3116272949 @default.
- W4386561978 hasRelatedWork W3157910026 @default.
- W4386561978 hasVolume "18" @default.
- W4386561978 isParatext "false" @default.
- W4386561978 isRetracted "false" @default.
- W4386561978 workType "article" @default.