Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386562495> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4386562495 abstract "<sec> <title>BACKGROUND</title> The incidence of breast cancer has remained high and continues to rise since the 21st century. Consequently, there has been a significant increase in research efforts focused on breast cancer prevention and treatment. Despite the extensive body of literature available on this subject, systematic integration is lacking. To address this issue, knowledge graphs have emerged as a valuable tool. By harnessing their powerful knowledge integration capabilities, knowledge graphs offer a comprehensive and structured approach to understanding breast cancer prevention and treatment. </sec> <sec> <title>OBJECTIVE</title> We aimed to build a knowledge graph to integrate information related to breast prevention and treatment. </sec> <sec> <title>METHODS</title> We used MESH terms to search for clinical trial literature on breast cancer prevention and treatment published on PubMed between 2018 and 2021. We downloaded triplet data from SemmedDB and matched them with the retrieved literature to obtain triplet data for the target articles. We visualized the triplet information using NetworkX for knowledge discovery. </sec> <sec> <title>RESULTS</title> Within the scope of literature research in the past five years, Malignant neoplasm appeared most frequently (42.32%). Pharmacotherapy (19.22%) was the primary treatment method, with Paclitaxel (9.83%) being the most commonly used therapeutic drug. Through the analysis of the knowledge graph, we have discovered that there exists a complex network relationship between the treatment methods, therapeutic drugs, and preventive measures for different types of breast cancer, rather than a simple linear correlation. </sec> <sec> <title>CONCLUSIONS</title> This study constructed a knowledge graph for breast cancer prevention and treatment, which enabled the integration and knowledge discovery of relevant literature in the past five years. Researchers can gain insights into treatment methods, drugs, preventive knowledge regarding adverse reactions to treatment, and the associations between different knowledge domains from the graph. </sec>" @default.
- W4386562495 created "2023-09-10" @default.
- W4386562495 creator A5001014826 @default.
- W4386562495 creator A5006872949 @default.
- W4386562495 creator A5006884460 @default.
- W4386562495 creator A5059826081 @default.
- W4386562495 date "2023-08-26" @default.
- W4386562495 modified "2023-09-27" @default.
- W4386562495 title "Knowledge graph of breast cancer prevention and treatment - based on artificial intelligence theory (Preprint)" @default.
- W4386562495 cites W1583715403 @default.
- W4386562495 cites W1977384689 @default.
- W4386562495 cites W1981420381 @default.
- W4386562495 cites W2030220372 @default.
- W4386562495 cites W2056325010 @default.
- W4386562495 cites W2141647078 @default.
- W4386562495 cites W2759136286 @default.
- W4386562495 cites W2889646458 @default.
- W4386562495 cites W2909923812 @default.
- W4386562495 cites W2928532166 @default.
- W4386562495 cites W2954752565 @default.
- W4386562495 cites W3015409108 @default.
- W4386562495 cites W3026298482 @default.
- W4386562495 cites W3035321842 @default.
- W4386562495 cites W3099585239 @default.
- W4386562495 cites W3161650232 @default.
- W4386562495 cites W3205855856 @default.
- W4386562495 cites W4200346753 @default.
- W4386562495 cites W4210549652 @default.
- W4386562495 cites W4220733295 @default.
- W4386562495 cites W4308491187 @default.
- W4386562495 cites W4377221489 @default.
- W4386562495 doi "https://doi.org/10.2196/preprints.52210" @default.
- W4386562495 hasPublicationYear "2023" @default.
- W4386562495 type Work @default.
- W4386562495 citedByCount "0" @default.
- W4386562495 crossrefType "posted-content" @default.
- W4386562495 hasAuthorship W4386562495A5001014826 @default.
- W4386562495 hasAuthorship W4386562495A5006872949 @default.
- W4386562495 hasAuthorship W4386562495A5006884460 @default.
- W4386562495 hasAuthorship W4386562495A5059826081 @default.
- W4386562495 hasConcept C121608353 @default.
- W4386562495 hasConcept C126322002 @default.
- W4386562495 hasConcept C154945302 @default.
- W4386562495 hasConcept C2987255567 @default.
- W4386562495 hasConcept C41008148 @default.
- W4386562495 hasConcept C530470458 @default.
- W4386562495 hasConcept C71924100 @default.
- W4386562495 hasConceptScore W4386562495C121608353 @default.
- W4386562495 hasConceptScore W4386562495C126322002 @default.
- W4386562495 hasConceptScore W4386562495C154945302 @default.
- W4386562495 hasConceptScore W4386562495C2987255567 @default.
- W4386562495 hasConceptScore W4386562495C41008148 @default.
- W4386562495 hasConceptScore W4386562495C530470458 @default.
- W4386562495 hasConceptScore W4386562495C71924100 @default.
- W4386562495 hasLocation W43865624951 @default.
- W4386562495 hasOpenAccess W4386562495 @default.
- W4386562495 hasPrimaryLocation W43865624951 @default.
- W4386562495 hasRelatedWork W2014447844 @default.
- W4386562495 hasRelatedWork W2297592050 @default.
- W4386562495 hasRelatedWork W2346234991 @default.
- W4386562495 hasRelatedWork W2748952813 @default.
- W4386562495 hasRelatedWork W2899084033 @default.
- W4386562495 hasRelatedWork W3130591221 @default.
- W4386562495 hasRelatedWork W3196332669 @default.
- W4386562495 hasRelatedWork W4286435951 @default.
- W4386562495 hasRelatedWork W4286448049 @default.
- W4386562495 hasRelatedWork W4365129602 @default.
- W4386562495 isParatext "false" @default.
- W4386562495 isRetracted "false" @default.
- W4386562495 workType "article" @default.