Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386562989> ?p ?o ?g. }
- W4386562989 endingPage "572" @default.
- W4386562989 startingPage "572" @default.
- W4386562989 abstract "In emergency rescue missions, rescue teams can use UAVs and efficient path planning strategies to provide flexible rescue services for trapped people, which can improve rescue efficiency and reduce personnel risks. However, since the task environment of UAVs is usually complex, uncertain, and communication-limited, traditional path planning methods may not be able to meet practical needs. In this paper, we introduce a whale optimization algorithm into a deep Q-network and propose a path planning algorithm based on a whale-inspired deep Q-network, which enables UAVs to search for targets faster and safer in uncertain and complex environments. In particular, we first transform the UAV path planning problem into a Markov decision process. Then, we design a comprehensive reward function considering the three factors of path length, obstacle avoidance, and energy consumption. Next, we use the main framework of the deep Q-network to approximate the Q-value function by training a deep neural network. During the training phase, the whale optimization algorithm is introduced for path exploration to generate a richer action decision experience. Finally, experiments show that the proposed algorithm can enable the UAV to autonomously plan a collision-free feasible path in an uncertain environment. And compared with classic reinforcement learning algorithms, the proposed algorithm has a better performance in learning efficiency, path planning success rate, and path length." @default.
- W4386562989 created "2023-09-10" @default.
- W4386562989 creator A5019896548 @default.
- W4386562989 creator A5028477248 @default.
- W4386562989 creator A5032616837 @default.
- W4386562989 creator A5054259002 @default.
- W4386562989 creator A5055684887 @default.
- W4386562989 creator A5074415234 @default.
- W4386562989 creator A5085364409 @default.
- W4386562989 date "2023-09-08" @default.
- W4386562989 modified "2023-10-16" @default.
- W4386562989 title "Multiple Unmanned Aerial Vehicle Autonomous Path Planning Algorithm Based on Whale-Inspired Deep Q-Network" @default.
- W4386562989 cites W2901309210 @default.
- W4386562989 cites W2914528392 @default.
- W4386562989 cites W2973697444 @default.
- W4386562989 cites W2980857402 @default.
- W4386562989 cites W3033477716 @default.
- W4386562989 cites W3093571944 @default.
- W4386562989 cites W3113900168 @default.
- W4386562989 cites W3137963285 @default.
- W4386562989 cites W3138755759 @default.
- W4386562989 cites W3158378362 @default.
- W4386562989 cites W3174477678 @default.
- W4386562989 cites W3177136949 @default.
- W4386562989 cites W3186469707 @default.
- W4386562989 cites W3199090101 @default.
- W4386562989 cites W3213966068 @default.
- W4386562989 cites W3214343395 @default.
- W4386562989 cites W3214464180 @default.
- W4386562989 cites W4200220124 @default.
- W4386562989 cites W4200512239 @default.
- W4386562989 cites W4206617872 @default.
- W4386562989 cites W4220987435 @default.
- W4386562989 cites W4223962571 @default.
- W4386562989 cites W4240842178 @default.
- W4386562989 cites W4281387985 @default.
- W4386562989 cites W4281671899 @default.
- W4386562989 cites W4283453035 @default.
- W4386562989 cites W4285189951 @default.
- W4386562989 cites W4285279866 @default.
- W4386562989 cites W4289792858 @default.
- W4386562989 cites W4308217369 @default.
- W4386562989 cites W4308603433 @default.
- W4386562989 cites W4309225961 @default.
- W4386562989 cites W4312400577 @default.
- W4386562989 cites W4313014790 @default.
- W4386562989 cites W4313245126 @default.
- W4386562989 cites W4319303306 @default.
- W4386562989 cites W4319985867 @default.
- W4386562989 cites W4320802665 @default.
- W4386562989 cites W4365392756 @default.
- W4386562989 cites W4372325370 @default.
- W4386562989 doi "https://doi.org/10.3390/drones7090572" @default.
- W4386562989 hasPublicationYear "2023" @default.
- W4386562989 type Work @default.
- W4386562989 citedByCount "0" @default.
- W4386562989 crossrefType "journal-article" @default.
- W4386562989 hasAuthorship W4386562989A5019896548 @default.
- W4386562989 hasAuthorship W4386562989A5028477248 @default.
- W4386562989 hasAuthorship W4386562989A5032616837 @default.
- W4386562989 hasAuthorship W4386562989A5054259002 @default.
- W4386562989 hasAuthorship W4386562989A5055684887 @default.
- W4386562989 hasAuthorship W4386562989A5074415234 @default.
- W4386562989 hasAuthorship W4386562989A5085364409 @default.
- W4386562989 hasBestOaLocation W43865629891 @default.
- W4386562989 hasConcept C105795698 @default.
- W4386562989 hasConcept C106189395 @default.
- W4386562989 hasConcept C108583219 @default.
- W4386562989 hasConcept C11413529 @default.
- W4386562989 hasConcept C126255220 @default.
- W4386562989 hasConcept C129045301 @default.
- W4386562989 hasConcept C154945302 @default.
- W4386562989 hasConcept C159886148 @default.
- W4386562989 hasConcept C17744445 @default.
- W4386562989 hasConcept C188116033 @default.
- W4386562989 hasConcept C199360897 @default.
- W4386562989 hasConcept C199539241 @default.
- W4386562989 hasConcept C19966478 @default.
- W4386562989 hasConcept C2776650193 @default.
- W4386562989 hasConcept C2776654903 @default.
- W4386562989 hasConcept C2777735758 @default.
- W4386562989 hasConcept C31258907 @default.
- W4386562989 hasConcept C33923547 @default.
- W4386562989 hasConcept C38652104 @default.
- W4386562989 hasConcept C41008148 @default.
- W4386562989 hasConcept C6683253 @default.
- W4386562989 hasConcept C79403827 @default.
- W4386562989 hasConcept C81074085 @default.
- W4386562989 hasConcept C90509273 @default.
- W4386562989 hasConcept C97541855 @default.
- W4386562989 hasConceptScore W4386562989C105795698 @default.
- W4386562989 hasConceptScore W4386562989C106189395 @default.
- W4386562989 hasConceptScore W4386562989C108583219 @default.
- W4386562989 hasConceptScore W4386562989C11413529 @default.
- W4386562989 hasConceptScore W4386562989C126255220 @default.
- W4386562989 hasConceptScore W4386562989C129045301 @default.
- W4386562989 hasConceptScore W4386562989C154945302 @default.
- W4386562989 hasConceptScore W4386562989C159886148 @default.