Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386564564> ?p ?o ?g. }
- W4386564564 endingPage "107278" @default.
- W4386564564 startingPage "107278" @default.
- W4386564564 abstract "Presently, technology innovations are disrupting the status quo and changing the way people travel. In an effort to enhance safety, ease driving tasks, and attract car buyers, automobile manufacturers are offering new vehicle automation technologies. As these vehicle technologies become more automated, navigation around and interactions with pedestrians and bicyclists in complex travel environments becomes more challenging. With people being less predictable and less identifiable than other machines, these technologies can pose safety concerns for all users. In light of this, there is a need to further study the interaction between cyclists, pedestrians, and automated vehicles. In 2019, Bike Pittsburgh (BikePGH) conducted a survey of autonomous vehicles (AVs) in Pittsburgh, Pennsylvania to understand the perception of bicyclists and pedestrians when sharing the road with AVs. This study used the data collected by BikePGH to understand various factors associated with bicyclists' and pedestrians' perception of safety when sharing the road with AVs. Bayesian Networks (BNs) were used to learn the probabilistic interrelationship among AVs' aspects. BN results revealed that familiarity with the technology behind AVs, feeling safe while sharing the road with AVs, and using Pittsburgh's public streets as a proving ground for AVs were associated with higher likelihood of AVs' safety potential to reduce traffic injuries and fatalities. On the other hand, feeling safe while sharing the road with human-driven cars was associated with lower likelihood of AVs' safety potential to reduce traffic injuries and fatalities. Furthermore, the BN model predicted that the experience of sharing the road with AVs while riding a bicycle or walking, familiarity with the technology behind AVs, and using Pittsburgh's public streets as a proving ground for AVs were associated with higher likelihood of feeling safe sharing the road with AVs. The joint analysis of the variable showed the highest predicted probabilities of 95% and 86%, respectively for AVs' potential to reduce traffic injuries and fatalities and for feeling safe sharing the road with AVs. The practical application of this study is presented along with recommendations to operators, city engineers, and planner." @default.
- W4386564564 created "2023-09-10" @default.
- W4386564564 creator A5019694838 @default.
- W4386564564 creator A5027727433 @default.
- W4386564564 date "2023-11-01" @default.
- W4386564564 modified "2023-09-27" @default.
- W4386564564 title "Stated preference analysis of autonomous vehicle among bicyclists and pedestrians in Pittsburgh using Bayesian Networks" @default.
- W4386564564 cites W1999151427 @default.
- W4386564564 cites W2015833863 @default.
- W4386564564 cites W2019262216 @default.
- W4386564564 cites W2054137409 @default.
- W4386564564 cites W2098128908 @default.
- W4386564564 cites W2120498062 @default.
- W4386564564 cites W2161831631 @default.
- W4386564564 cites W2306055086 @default.
- W4386564564 cites W2309509668 @default.
- W4386564564 cites W2519413907 @default.
- W4386564564 cites W2763318067 @default.
- W4386564564 cites W2769079225 @default.
- W4386564564 cites W2792223948 @default.
- W4386564564 cites W2794821747 @default.
- W4386564564 cites W2809902926 @default.
- W4386564564 cites W2810029924 @default.
- W4386564564 cites W2877223537 @default.
- W4386564564 cites W2895922401 @default.
- W4386564564 cites W2920384866 @default.
- W4386564564 cites W2921570307 @default.
- W4386564564 cites W2963722898 @default.
- W4386564564 cites W2979798826 @default.
- W4386564564 cites W2998915979 @default.
- W4386564564 cites W3026128003 @default.
- W4386564564 cites W3113014697 @default.
- W4386564564 cites W3135636203 @default.
- W4386564564 cites W3147729069 @default.
- W4386564564 cites W3165913709 @default.
- W4386564564 cites W4200257210 @default.
- W4386564564 cites W4210896394 @default.
- W4386564564 cites W4308156705 @default.
- W4386564564 doi "https://doi.org/10.1016/j.aap.2023.107278" @default.
- W4386564564 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37683566" @default.
- W4386564564 hasPublicationYear "2023" @default.
- W4386564564 type Work @default.
- W4386564564 citedByCount "0" @default.
- W4386564564 crossrefType "journal-article" @default.
- W4386564564 hasAuthorship W4386564564A5019694838 @default.
- W4386564564 hasAuthorship W4386564564A5027727433 @default.
- W4386564564 hasConcept C115901376 @default.
- W4386564564 hasConcept C122980154 @default.
- W4386564564 hasConcept C127413603 @default.
- W4386564564 hasConcept C154945302 @default.
- W4386564564 hasConcept C15744967 @default.
- W4386564564 hasConcept C166735990 @default.
- W4386564564 hasConcept C169760540 @default.
- W4386564564 hasConcept C22212356 @default.
- W4386564564 hasConcept C26760741 @default.
- W4386564564 hasConcept C3017944768 @default.
- W4386564564 hasConcept C33724603 @default.
- W4386564564 hasConcept C38652104 @default.
- W4386564564 hasConcept C41008148 @default.
- W4386564564 hasConcept C71924100 @default.
- W4386564564 hasConcept C77805123 @default.
- W4386564564 hasConcept C78519656 @default.
- W4386564564 hasConcept C87833898 @default.
- W4386564564 hasConcept C99454951 @default.
- W4386564564 hasConceptScore W4386564564C115901376 @default.
- W4386564564 hasConceptScore W4386564564C122980154 @default.
- W4386564564 hasConceptScore W4386564564C127413603 @default.
- W4386564564 hasConceptScore W4386564564C154945302 @default.
- W4386564564 hasConceptScore W4386564564C15744967 @default.
- W4386564564 hasConceptScore W4386564564C166735990 @default.
- W4386564564 hasConceptScore W4386564564C169760540 @default.
- W4386564564 hasConceptScore W4386564564C22212356 @default.
- W4386564564 hasConceptScore W4386564564C26760741 @default.
- W4386564564 hasConceptScore W4386564564C3017944768 @default.
- W4386564564 hasConceptScore W4386564564C33724603 @default.
- W4386564564 hasConceptScore W4386564564C38652104 @default.
- W4386564564 hasConceptScore W4386564564C41008148 @default.
- W4386564564 hasConceptScore W4386564564C71924100 @default.
- W4386564564 hasConceptScore W4386564564C77805123 @default.
- W4386564564 hasConceptScore W4386564564C78519656 @default.
- W4386564564 hasConceptScore W4386564564C87833898 @default.
- W4386564564 hasConceptScore W4386564564C99454951 @default.
- W4386564564 hasLocation W43865645641 @default.
- W4386564564 hasLocation W43865645642 @default.
- W4386564564 hasOpenAccess W4386564564 @default.
- W4386564564 hasPrimaryLocation W43865645641 @default.
- W4386564564 hasRelatedWork W1989018666 @default.
- W4386564564 hasRelatedWork W2033584281 @default.
- W4386564564 hasRelatedWork W2035782666 @default.
- W4386564564 hasRelatedWork W2485949545 @default.
- W4386564564 hasRelatedWork W2581165752 @default.
- W4386564564 hasRelatedWork W2899084033 @default.
- W4386564564 hasRelatedWork W2923208291 @default.
- W4386564564 hasRelatedWork W2941260004 @default.
- W4386564564 hasRelatedWork W3085425023 @default.
- W4386564564 hasRelatedWork W3099826891 @default.
- W4386564564 hasVolume "192" @default.
- W4386564564 isParatext "false" @default.