Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386568181> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4386568181 endingPage "15" @default.
- W4386568181 startingPage "1" @default.
- W4386568181 abstract "Data analysis and classification can be affected by the availability of missing data in datasets. To deal with missing data, either deletion- or imputation-based methods are used that result in the reduction of data records or imputation of incorrect predicted value. Quality of imputed data can be significantly improved if missing values are generated accurately using machine learning algorithms. In this work, an analysis of machine learning-based algorithms for missing data imputation is performed. The K-nearest neighbors (KNN) and Sequential KNN (SKNN) algorithms are used to impute missing values in datasets using machine learning. Missing values handled using a statistical deletion approach (List-wise Deletion (LD)) and ML-based imputation methods (KNN and SKNN) are then tested and compared using different ML classifiers (Support Vector Machine and Decision Tree) to evaluate the effectiveness of imputed data. The used algorithms are compared in terms of accuracy, and results yielded that the ML-based imputation method (SKNN) outperforms the LD-based approach and KNN method in terms of the effectiveness of handling missing data in almost every dataset with both classification algorithms (SVM and DT)." @default.
- W4386568181 created "2023-09-10" @default.
- W4386568181 creator A5008746407 @default.
- W4386568181 creator A5012724360 @default.
- W4386568181 creator A5024997989 @default.
- W4386568181 creator A5036269521 @default.
- W4386568181 creator A5048816374 @default.
- W4386568181 date "2023-09-09" @default.
- W4386568181 modified "2023-09-29" @default.
- W4386568181 title "Analysis of Machine Learning Based Imputation of Missing Data" @default.
- W4386568181 cites W1528243976 @default.
- W4386568181 cites W1560161678 @default.
- W4386568181 cites W2009432182 @default.
- W4386568181 cites W2011773465 @default.
- W4386568181 cites W2049633694 @default.
- W4386568181 cites W2078965693 @default.
- W4386568181 cites W2082801347 @default.
- W4386568181 cites W2095411044 @default.
- W4386568181 cites W2104929455 @default.
- W4386568181 cites W2116814040 @default.
- W4386568181 cites W2148423395 @default.
- W4386568181 cites W2245479382 @default.
- W4386568181 cites W2897020959 @default.
- W4386568181 cites W3123976517 @default.
- W4386568181 cites W4229978471 @default.
- W4386568181 cites W4236137412 @default.
- W4386568181 cites W4256250088 @default.
- W4386568181 doi "https://doi.org/10.1080/01969722.2023.2247257" @default.
- W4386568181 hasPublicationYear "2023" @default.
- W4386568181 type Work @default.
- W4386568181 citedByCount "0" @default.
- W4386568181 crossrefType "journal-article" @default.
- W4386568181 hasAuthorship W4386568181A5008746407 @default.
- W4386568181 hasAuthorship W4386568181A5012724360 @default.
- W4386568181 hasAuthorship W4386568181A5024997989 @default.
- W4386568181 hasAuthorship W4386568181A5036269521 @default.
- W4386568181 hasAuthorship W4386568181A5048816374 @default.
- W4386568181 hasBestOaLocation W43865681811 @default.
- W4386568181 hasConcept C119857082 @default.
- W4386568181 hasConcept C12267149 @default.
- W4386568181 hasConcept C124101348 @default.
- W4386568181 hasConcept C153180895 @default.
- W4386568181 hasConcept C154945302 @default.
- W4386568181 hasConcept C41008148 @default.
- W4386568181 hasConcept C58041806 @default.
- W4386568181 hasConcept C84525736 @default.
- W4386568181 hasConcept C9357733 @default.
- W4386568181 hasConceptScore W4386568181C119857082 @default.
- W4386568181 hasConceptScore W4386568181C12267149 @default.
- W4386568181 hasConceptScore W4386568181C124101348 @default.
- W4386568181 hasConceptScore W4386568181C153180895 @default.
- W4386568181 hasConceptScore W4386568181C154945302 @default.
- W4386568181 hasConceptScore W4386568181C41008148 @default.
- W4386568181 hasConceptScore W4386568181C58041806 @default.
- W4386568181 hasConceptScore W4386568181C84525736 @default.
- W4386568181 hasConceptScore W4386568181C9357733 @default.
- W4386568181 hasLocation W43865681811 @default.
- W4386568181 hasOpenAccess W4386568181 @default.
- W4386568181 hasPrimaryLocation W43865681811 @default.
- W4386568181 hasRelatedWork W1513289763 @default.
- W4386568181 hasRelatedWork W1973721774 @default.
- W4386568181 hasRelatedWork W2316243772 @default.
- W4386568181 hasRelatedWork W2541565311 @default.
- W4386568181 hasRelatedWork W2751555317 @default.
- W4386568181 hasRelatedWork W2784019465 @default.
- W4386568181 hasRelatedWork W2900766238 @default.
- W4386568181 hasRelatedWork W3049453136 @default.
- W4386568181 hasRelatedWork W569810835 @default.
- W4386568181 hasRelatedWork W2112497756 @default.
- W4386568181 isParatext "false" @default.
- W4386568181 isRetracted "false" @default.
- W4386568181 workType "article" @default.