Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386570483> ?p ?o ?g. }
- W4386570483 endingPage "212303" @default.
- W4386570483 startingPage "212303" @default.
- W4386570483 abstract "In complex carbonate reservoirs, it is crucial to understand the connections between reservoir compositions (minerals, facies, and properties). Conventionally, core samples have been used to measure reservoir parameters and identify minerals and facies. However, core samples are limited to certain wells. Therefore, additional techniques are necessary to overcome this limitation comprehensively. This study aims to identify key mineralogical and facies components of the Barra Velha Formation (BVF) and their relation to reservoir parameters. Dolomite, calcite, quartz, and clay minerals were commonly found using X-ray Diffraction (XRD). By employing multi-mineral (MM) petrophysical evaluations, we accurately recreated mineral quantities from XRD and petrophysical properties from core analysis to ensure reliability. Replications of inputs well logs and the mineralogical volume from spectroscopic (ECS) were used as reliability techniques for validating the MM. A total of 47 wells were analyzed using those methods. In this study, the classification of facies was accomplished through the selection of three prominent supervised artificial intelligence techniques, among which SOM, a widely employed method for facies estimation, was included. Additionally, the ensemble methods of Random Forest and XGBoost were adopted due to their recognized efficacy in handling tabular data and their track record of success in machine learning and artificial intelligence competitions. Remarkably, the performance evaluation revealed that Random Forest and XGBoost algorithms outperformed SOM, yielding the most favorable outcomes in this context. An integrated analysis of mineralogical and facies results was conducted, incorporating production data and special profiles such as nuclear magnetic resonance (NMR) and Wellbore Image (WBI) to identify vug-containing areas. The dolomitic facies exhibited favorable reservoir qualities, influenced by diagenetic processes represented by vuggy porosity, which enhanced permeability. Shrubstones, spherulites, and reworked facies showed superior petrophysical qualities and were connected with productive regions, leading to elevated dolomite concentrations, and vuggy abundance. The study highlights two major innovations: the use of mineralogical volume from multi-mineral assessments as inputs for AI-based property estimation to improve facies estimates, and the discovery of relationships between facies, minerals, and reservoir properties, compared to production data. This understanding allows for more accurate static model creation, optimal production interval selection, improved hydrocarbon recovery, and better specification of stimulation processes." @default.
- W4386570483 created "2023-09-10" @default.
- W4386570483 creator A5009566538 @default.
- W4386570483 creator A5012140858 @default.
- W4386570483 creator A5028061559 @default.
- W4386570483 creator A5055095911 @default.
- W4386570483 creator A5061960835 @default.
- W4386570483 creator A5088395879 @default.
- W4386570483 creator A5091518389 @default.
- W4386570483 creator A5092832121 @default.
- W4386570483 date "2023-12-01" @default.
- W4386570483 modified "2023-10-17" @default.
- W4386570483 title "Utilizing integrated artificial intelligence for characterizing mineralogy and facies in a pre-salt carbonate reservoir, Santos Basin, Brazil, using cores, wireline logs, and multi-mineral petrophysical evaluation" @default.
- W4386570483 cites W1983459530 @default.
- W4386570483 cites W1984434911 @default.
- W4386570483 cites W2004222522 @default.
- W4386570483 cites W2105628276 @default.
- W4386570483 cites W2118572664 @default.
- W4386570483 cites W2122754011 @default.
- W4386570483 cites W2194494583 @default.
- W4386570483 cites W2550890923 @default.
- W4386570483 cites W2729757761 @default.
- W4386570483 cites W2757438628 @default.
- W4386570483 cites W2766259095 @default.
- W4386570483 cites W2775262878 @default.
- W4386570483 cites W2793081439 @default.
- W4386570483 cites W2793197691 @default.
- W4386570483 cites W2793669142 @default.
- W4386570483 cites W2795350661 @default.
- W4386570483 cites W2887776769 @default.
- W4386570483 cites W2912611334 @default.
- W4386570483 cites W2913387978 @default.
- W4386570483 cites W2952609086 @default.
- W4386570483 cites W2981500773 @default.
- W4386570483 cites W2991366864 @default.
- W4386570483 cites W2995779819 @default.
- W4386570483 cites W2999707118 @default.
- W4386570483 cites W3011101742 @default.
- W4386570483 cites W3012833929 @default.
- W4386570483 cites W3014564255 @default.
- W4386570483 cites W3034362861 @default.
- W4386570483 cites W3045004532 @default.
- W4386570483 cites W3095899511 @default.
- W4386570483 cites W3158136296 @default.
- W4386570483 cites W3163284135 @default.
- W4386570483 cites W3212795973 @default.
- W4386570483 cites W3213457460 @default.
- W4386570483 cites W4284702966 @default.
- W4386570483 cites W4289253724 @default.
- W4386570483 cites W4289938433 @default.
- W4386570483 cites W4308841970 @default.
- W4386570483 cites W4311079619 @default.
- W4386570483 cites W4312112773 @default.
- W4386570483 cites W4313556764 @default.
- W4386570483 cites W4318567278 @default.
- W4386570483 cites W4320919046 @default.
- W4386570483 cites W4321783289 @default.
- W4386570483 cites W4360954541 @default.
- W4386570483 cites W4362699916 @default.
- W4386570483 cites W4364357436 @default.
- W4386570483 cites W4366717039 @default.
- W4386570483 cites W4372328829 @default.
- W4386570483 cites W4376254233 @default.
- W4386570483 cites W4377246887 @default.
- W4386570483 cites W4380203463 @default.
- W4386570483 doi "https://doi.org/10.1016/j.geoen.2023.212303" @default.
- W4386570483 hasPublicationYear "2023" @default.
- W4386570483 type Work @default.
- W4386570483 citedByCount "0" @default.
- W4386570483 crossrefType "journal-article" @default.
- W4386570483 hasAuthorship W4386570483A5009566538 @default.
- W4386570483 hasAuthorship W4386570483A5012140858 @default.
- W4386570483 hasAuthorship W4386570483A5028061559 @default.
- W4386570483 hasAuthorship W4386570483A5055095911 @default.
- W4386570483 hasAuthorship W4386570483A5061960835 @default.
- W4386570483 hasAuthorship W4386570483A5088395879 @default.
- W4386570483 hasAuthorship W4386570483A5091518389 @default.
- W4386570483 hasAuthorship W4386570483A5092832121 @default.
- W4386570483 hasConcept C109007969 @default.
- W4386570483 hasConcept C114793014 @default.
- W4386570483 hasConcept C127313418 @default.
- W4386570483 hasConcept C14641988 @default.
- W4386570483 hasConcept C146588470 @default.
- W4386570483 hasConcept C151730666 @default.
- W4386570483 hasConcept C187320778 @default.
- W4386570483 hasConcept C199289684 @default.
- W4386570483 hasConcept C2779343474 @default.
- W4386570483 hasConcept C2780181037 @default.
- W4386570483 hasConcept C35817400 @default.
- W4386570483 hasConcept C46293882 @default.
- W4386570483 hasConcept C5900021 @default.
- W4386570483 hasConcept C6648577 @default.
- W4386570483 hasConcept C78762247 @default.
- W4386570483 hasConceptScore W4386570483C109007969 @default.
- W4386570483 hasConceptScore W4386570483C114793014 @default.
- W4386570483 hasConceptScore W4386570483C127313418 @default.
- W4386570483 hasConceptScore W4386570483C14641988 @default.
- W4386570483 hasConceptScore W4386570483C146588470 @default.