Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386571008> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4386571008 endingPage "121416" @default.
- W4386571008 startingPage "121416" @default.
- W4386571008 abstract "The presence of Beggiatoa Spp. indicates anoxic conditions or ‘poor condition’ in marine sediments beneath aquaculture pens, resulting from organic enrichment. Currently, the most efficient approach to estimate Beggiatoa Spp. coverage, and thus the extent of the issue, involves video surveys which are scored by human observers for presence of this bacteria. However, this approach is highly time-consuming and relies heavily on the expertise and experience of the individuals involved, thus affecting its accuracy. Machine learning-based computer vision techniques, such as Convolutional Neural Networks (CNNs), offer the potential for automated estimation of Beggiatoa Spp. coverage. However, most existing machine learning methods focus solely on the estimation of the coverage via presence, absence of a single type of Beggiatoa Spp.. These approaches typically rely on binary classification to distinguish the object from the background when estimating coverage. Nevertheless, the inclusion of subordinate categories within high-level classifications poses a great challenge for accurately estimating their coverage rates. In this paper, an adaptive ensemble learning approach was proposed to estimate Beggiatoa Spp. coverage. Unlike other approaches, the proposed approach is capable in adaptively extracting and fusing features from underwater images and accurately estimating the coverages of multiple types of Beggiatoa Spp. through ensemble learning. Experimental results demonstrated that our proposed approach outperforms other approaches in terms of both effectiveness and efficiency in estimating Beggiatoa Spp. coverage." @default.
- W4386571008 created "2023-09-10" @default.
- W4386571008 creator A5000398141 @default.
- W4386571008 creator A5008915336 @default.
- W4386571008 creator A5010341141 @default.
- W4386571008 creator A5029548157 @default.
- W4386571008 creator A5050364384 @default.
- W4386571008 creator A5080980747 @default.
- W4386571008 date "2024-03-01" @default.
- W4386571008 modified "2023-09-27" @default.
- W4386571008 title "A novel adaptive ensemble learning framework for automated Beggiatoa Spp. coverage estimation" @default.
- W4386571008 cites W1556262182 @default.
- W4386571008 cites W1641759413 @default.
- W4386571008 cites W1919268539 @default.
- W4386571008 cites W1972281563 @default.
- W4386571008 cites W1991039612 @default.
- W4386571008 cites W1995518732 @default.
- W4386571008 cites W2024801412 @default.
- W4386571008 cites W2025821863 @default.
- W4386571008 cites W2034863301 @default.
- W4386571008 cites W2049521380 @default.
- W4386571008 cites W2108288577 @default.
- W4386571008 cites W2160899588 @default.
- W4386571008 cites W2186155590 @default.
- W4386571008 cites W2278322540 @default.
- W4386571008 cites W2343818649 @default.
- W4386571008 cites W2729018917 @default.
- W4386571008 cites W2766494712 @default.
- W4386571008 cites W2779910509 @default.
- W4386571008 cites W2885569597 @default.
- W4386571008 cites W2899061025 @default.
- W4386571008 cites W2924950986 @default.
- W4386571008 cites W2944354449 @default.
- W4386571008 cites W2988779004 @default.
- W4386571008 cites W2998792609 @default.
- W4386571008 cites W3038447340 @default.
- W4386571008 cites W3133696950 @default.
- W4386571008 cites W3177722989 @default.
- W4386571008 cites W4206237889 @default.
- W4386571008 cites W4214556326 @default.
- W4386571008 cites W4220785178 @default.
- W4386571008 cites W4225117496 @default.
- W4386571008 cites W4281982154 @default.
- W4386571008 cites W4308524283 @default.
- W4386571008 cites W4327703836 @default.
- W4386571008 doi "https://doi.org/10.1016/j.eswa.2023.121416" @default.
- W4386571008 hasPublicationYear "2024" @default.
- W4386571008 type Work @default.
- W4386571008 citedByCount "0" @default.
- W4386571008 crossrefType "journal-article" @default.
- W4386571008 hasAuthorship W4386571008A5000398141 @default.
- W4386571008 hasAuthorship W4386571008A5008915336 @default.
- W4386571008 hasAuthorship W4386571008A5010341141 @default.
- W4386571008 hasAuthorship W4386571008A5029548157 @default.
- W4386571008 hasAuthorship W4386571008A5050364384 @default.
- W4386571008 hasAuthorship W4386571008A5080980747 @default.
- W4386571008 hasBestOaLocation W43865710081 @default.
- W4386571008 hasConcept C119857082 @default.
- W4386571008 hasConcept C124101348 @default.
- W4386571008 hasConcept C153180895 @default.
- W4386571008 hasConcept C154945302 @default.
- W4386571008 hasConcept C41008148 @default.
- W4386571008 hasConcept C81363708 @default.
- W4386571008 hasConceptScore W4386571008C119857082 @default.
- W4386571008 hasConceptScore W4386571008C124101348 @default.
- W4386571008 hasConceptScore W4386571008C153180895 @default.
- W4386571008 hasConceptScore W4386571008C154945302 @default.
- W4386571008 hasConceptScore W4386571008C41008148 @default.
- W4386571008 hasConceptScore W4386571008C81363708 @default.
- W4386571008 hasLocation W43865710081 @default.
- W4386571008 hasOpenAccess W4386571008 @default.
- W4386571008 hasPrimaryLocation W43865710081 @default.
- W4386571008 hasRelatedWork W2521062615 @default.
- W4386571008 hasRelatedWork W2767651786 @default.
- W4386571008 hasRelatedWork W2912288872 @default.
- W4386571008 hasRelatedWork W2961085424 @default.
- W4386571008 hasRelatedWork W3016958897 @default.
- W4386571008 hasRelatedWork W3021430260 @default.
- W4386571008 hasRelatedWork W3027997911 @default.
- W4386571008 hasRelatedWork W3181746755 @default.
- W4386571008 hasRelatedWork W4287776258 @default.
- W4386571008 hasRelatedWork W4306674287 @default.
- W4386571008 hasVolume "237" @default.
- W4386571008 isParatext "false" @default.
- W4386571008 isRetracted "false" @default.
- W4386571008 workType "article" @default.