Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386571037> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4386571037 endingPage "135" @default.
- W4386571037 startingPage "133" @default.
- W4386571037 abstract "Cardiovascular disease is a prominent contributor to global mortality. The timely identification and prognostication of cardiovascular disease can mitigate its incidence and diminish fatality ratios. The use of machine learning has emerged as a promising methodology for forecasting the likelihood of heart disease. The present study delves into the application of machine learning algorithms in the prediction of heart disease. In this study, a publicly accessible dataset on heart disease is utilized to assess the efficacy of various machine learning algorithms and determine the optimal models. The study involves a comparative analysis of various algorithms, namely Logistic Regression, Random Forest, Support Vector Machines, and Artificial Neural Networks, with respect to their accuracy and other performance metrics. The findings indicate that the Artificial Neural Network model yielded the highest level of performance, exhibiting an accuracy rate of 87.5%. The aforementioned showcases the prospective employment of machine learning in the domain of heart disease prognosis, thereby highlighting the exigency for additional inquiry in this field." @default.
- W4386571037 created "2023-09-10" @default.
- W4386571037 creator A5005565016 @default.
- W4386571037 creator A5008138186 @default.
- W4386571037 creator A5059996473 @default.
- W4386571037 creator A5069601006 @default.
- W4386571037 creator A5081518781 @default.
- W4386571037 creator A5092832232 @default.
- W4386571037 date "2023-04-01" @default.
- W4386571037 modified "2023-10-14" @default.
- W4386571037 title "Cardiovascular Disease Prediction Using Machine Learning Ap-proaches" @default.
- W4386571037 doi "https://doi.org/10.55524/ijirem.2023.10.2.27" @default.
- W4386571037 hasPublicationYear "2023" @default.
- W4386571037 type Work @default.
- W4386571037 citedByCount "0" @default.
- W4386571037 crossrefType "journal-article" @default.
- W4386571037 hasAuthorship W4386571037A5005565016 @default.
- W4386571037 hasAuthorship W4386571037A5008138186 @default.
- W4386571037 hasAuthorship W4386571037A5059996473 @default.
- W4386571037 hasAuthorship W4386571037A5069601006 @default.
- W4386571037 hasAuthorship W4386571037A5081518781 @default.
- W4386571037 hasAuthorship W4386571037A5092832232 @default.
- W4386571037 hasBestOaLocation W43865710371 @default.
- W4386571037 hasConcept C116834253 @default.
- W4386571037 hasConcept C119857082 @default.
- W4386571037 hasConcept C12267149 @default.
- W4386571037 hasConcept C126322002 @default.
- W4386571037 hasConcept C151956035 @default.
- W4386571037 hasConcept C154945302 @default.
- W4386571037 hasConcept C169258074 @default.
- W4386571037 hasConcept C2779134260 @default.
- W4386571037 hasConcept C2780074459 @default.
- W4386571037 hasConcept C41008148 @default.
- W4386571037 hasConcept C50644808 @default.
- W4386571037 hasConcept C59822182 @default.
- W4386571037 hasConcept C71924100 @default.
- W4386571037 hasConcept C86803240 @default.
- W4386571037 hasConceptScore W4386571037C116834253 @default.
- W4386571037 hasConceptScore W4386571037C119857082 @default.
- W4386571037 hasConceptScore W4386571037C12267149 @default.
- W4386571037 hasConceptScore W4386571037C126322002 @default.
- W4386571037 hasConceptScore W4386571037C151956035 @default.
- W4386571037 hasConceptScore W4386571037C154945302 @default.
- W4386571037 hasConceptScore W4386571037C169258074 @default.
- W4386571037 hasConceptScore W4386571037C2779134260 @default.
- W4386571037 hasConceptScore W4386571037C2780074459 @default.
- W4386571037 hasConceptScore W4386571037C41008148 @default.
- W4386571037 hasConceptScore W4386571037C50644808 @default.
- W4386571037 hasConceptScore W4386571037C59822182 @default.
- W4386571037 hasConceptScore W4386571037C71924100 @default.
- W4386571037 hasConceptScore W4386571037C86803240 @default.
- W4386571037 hasIssue "2" @default.
- W4386571037 hasLocation W43865710371 @default.
- W4386571037 hasOpenAccess W4386571037 @default.
- W4386571037 hasPrimaryLocation W43865710371 @default.
- W4386571037 hasRelatedWork W3138469915 @default.
- W4386571037 hasRelatedWork W3195168932 @default.
- W4386571037 hasRelatedWork W4226239449 @default.
- W4386571037 hasRelatedWork W4246246790 @default.
- W4386571037 hasRelatedWork W4285343791 @default.
- W4386571037 hasRelatedWork W4321636153 @default.
- W4386571037 hasRelatedWork W4367335893 @default.
- W4386571037 hasRelatedWork W4381414210 @default.
- W4386571037 hasRelatedWork W4383535405 @default.
- W4386571037 hasRelatedWork W4384520063 @default.
- W4386571037 hasVolume "10" @default.
- W4386571037 isParatext "false" @default.
- W4386571037 isRetracted "false" @default.
- W4386571037 workType "article" @default.