Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386571105> ?p ?o ?g. }
- W4386571105 endingPage "103998" @default.
- W4386571105 startingPage "103998" @default.
- W4386571105 abstract "This paper investigates runtime monitoring of perception systems. Perception is a critical component of high-integrity applications of robotics and autonomous systems, such as self-driving cars. In these applications, failure of perception systems may put human life at risk, and a broad adoption of these technologies requires the development of methodologies to guarantee and monitor safe operation. Despite the paramount importance of perception, currently there is no formal approach for system-level perception monitoring. In this paper, we formalize the problem of runtime fault detection and identification in perception systems and present a framework to model diagnostic information using a diagnostic graph. We then provide a set of deterministic, probabilistic, and learning-based algorithms that use diagnostic graphs to perform fault detection and identification. Moreover, we investigate fundamental limits and provide deterministic and probabilistic guarantees on the fault detection and identification results. We conclude the paper with an extensive experimental evaluation, which recreates several realistic failure modes in the LGSVL open-source autonomous driving simulator, and applies the proposed system monitors to a state-of-the-art autonomous driving software stack (Baidu's Apollo Auto). The results show that the proposed system monitors outperform baselines, have the potential of preventing accidents in realistic autonomous driving scenarios, and incur a negligible computational overhead." @default.
- W4386571105 created "2023-09-10" @default.
- W4386571105 creator A5016865461 @default.
- W4386571105 creator A5042157108 @default.
- W4386571105 creator A5051370185 @default.
- W4386571105 date "2023-09-01" @default.
- W4386571105 modified "2023-09-26" @default.
- W4386571105 title "Monitoring of Perception Systems: Deterministic, Probabilistic, and Learning-based Fault Detection and Identification" @default.
- W4386571105 cites W1512912754 @default.
- W4386571105 cites W1607402491 @default.
- W4386571105 cites W1966547590 @default.
- W4386571105 cites W1975564985 @default.
- W4386571105 cites W1982134112 @default.
- W4386571105 cites W1985787415 @default.
- W4386571105 cites W2003530067 @default.
- W4386571105 cites W2037529689 @default.
- W4386571105 cites W2079290705 @default.
- W4386571105 cites W2085261163 @default.
- W4386571105 cites W2109525524 @default.
- W4386571105 cites W2130178369 @default.
- W4386571105 cites W2136064009 @default.
- W4386571105 cites W2144386448 @default.
- W4386571105 cites W2150335178 @default.
- W4386571105 cites W2217007515 @default.
- W4386571105 cites W2256658272 @default.
- W4386571105 cites W2328067583 @default.
- W4386571105 cites W2463467618 @default.
- W4386571105 cites W2525936901 @default.
- W4386571105 cites W2557169239 @default.
- W4386571105 cites W2588127806 @default.
- W4386571105 cites W2593187027 @default.
- W4386571105 cites W2606788990 @default.
- W4386571105 cites W2617250276 @default.
- W4386571105 cites W2737479107 @default.
- W4386571105 cites W2742210006 @default.
- W4386571105 cites W2752666516 @default.
- W4386571105 cites W2799894347 @default.
- W4386571105 cites W2811472820 @default.
- W4386571105 cites W2900065648 @default.
- W4386571105 cites W2926809789 @default.
- W4386571105 cites W2942899565 @default.
- W4386571105 cites W2946458591 @default.
- W4386571105 cites W2962700793 @default.
- W4386571105 cites W2962729173 @default.
- W4386571105 cites W2964051675 @default.
- W4386571105 cites W2964054038 @default.
- W4386571105 cites W2968296999 @default.
- W4386571105 cites W2970450457 @default.
- W4386571105 cites W2997212544 @default.
- W4386571105 cites W2998506103 @default.
- W4386571105 cites W3008065677 @default.
- W4386571105 cites W3015176854 @default.
- W4386571105 cites W3020913839 @default.
- W4386571105 cites W3034494757 @default.
- W4386571105 cites W3035172746 @default.
- W4386571105 cites W3036939397 @default.
- W4386571105 cites W3044582286 @default.
- W4386571105 cites W3080154729 @default.
- W4386571105 cites W3098394944 @default.
- W4386571105 cites W3098812810 @default.
- W4386571105 cites W3098881644 @default.
- W4386571105 cites W3111598592 @default.
- W4386571105 cites W3118738952 @default.
- W4386571105 cites W3124420883 @default.
- W4386571105 cites W3162004380 @default.
- W4386571105 cites W3172343269 @default.
- W4386571105 cites W3193198176 @default.
- W4386571105 cites W3195789010 @default.
- W4386571105 cites W3205180365 @default.
- W4386571105 cites W3208007721 @default.
- W4386571105 cites W3209445167 @default.
- W4386571105 cites W4205492173 @default.
- W4386571105 cites W4206482253 @default.
- W4386571105 cites W4213451485 @default.
- W4386571105 cites W4226241072 @default.
- W4386571105 cites W4241768805 @default.
- W4386571105 cites W4321193991 @default.
- W4386571105 doi "https://doi.org/10.1016/j.artint.2023.103998" @default.
- W4386571105 hasPublicationYear "2023" @default.
- W4386571105 type Work @default.
- W4386571105 citedByCount "0" @default.
- W4386571105 crossrefType "journal-article" @default.
- W4386571105 hasAuthorship W4386571105A5016865461 @default.
- W4386571105 hasAuthorship W4386571105A5042157108 @default.
- W4386571105 hasAuthorship W4386571105A5051370185 @default.
- W4386571105 hasConcept C111919701 @default.
- W4386571105 hasConcept C116834253 @default.
- W4386571105 hasConcept C119857082 @default.
- W4386571105 hasConcept C120314980 @default.
- W4386571105 hasConcept C152745839 @default.
- W4386571105 hasConcept C154945302 @default.
- W4386571105 hasConcept C169760540 @default.
- W4386571105 hasConcept C172707124 @default.
- W4386571105 hasConcept C26760741 @default.
- W4386571105 hasConcept C2779960059 @default.
- W4386571105 hasConcept C34413123 @default.
- W4386571105 hasConcept C41008148 @default.
- W4386571105 hasConcept C49937458 @default.