Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386572246> ?p ?o ?g. }
- W4386572246 abstract "Abstract Objectives To perform a comprehensive within-subject image quality analysis of abdominal CT examinations reconstructed with DLIR and to evaluate diagnostic accuracy compared to the routinely applied adaptive statistical iterative reconstruction (ASiR-V) algorithm. Materials and methods Oncologic patients were prospectively enrolled and underwent contrast-enhanced CT. Images were reconstructed with DLIR with three intensity levels of reconstruction (high, medium, and low) and ASiR-V at strength levels from 10 to 100% with a 10% interval. Three radiologists characterized the lesions and two readers assessed diagnostic accuracy and calculated signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), figure of merit (FOM), and subjective image quality, the latter with a 5-point Likert scale. Results Fifty patients (mean age: 70 ± 10 years, 23 men) were enrolled and 130 liver lesions (105 benign lesions, 25 metastases) were identified. DLIR_H achieved the highest SNR and CNR, comparable to ASiR-V 100% ( p ≥ .051). DLIR_M returned the highest subjective image quality (score: 5; IQR: 4–5; p ≤ .001) and significant median increase (29%) in FOM ( p < .001). Differences in detection were identified only for lesions ≤ 0.5 cm: 32/33 lesions were detected with DLIR_M and 26 lesions were detected with ASiR-V 50% ( p = .031). Lesion accuracy of was 93.8% (95% CI: 88.1, 97.3; 122 of 130 lesions) for DLIR and 87.7% (95% CI: 80.8, 92.8; 114 of 130 lesions) for ASiR-V 50%. Conclusions DLIR yields superior image quality and provides higher diagnostic accuracy compared to ASiR-V in the assessment of hypovascular liver lesions, in particular for lesions ≤ 0.5 cm. Clinical relevance statement Deep learning image reconstruction algorithm demonstrates higher diagnostic accuracy compared to iterative reconstruction in the identification of hypovascular liver lesions, especially for lesions ≤ 0.5 cm. Key Points • Iterative reconstruction algorithm impacts image texture, with negative effects on diagnostic capabilities. • Medium-strength deep learning image reconstruction algorithm outperforms iterative reconstruction in the diagnostic accuracy of ≤ 0.5 cm hypovascular liver lesions (93.9% vs 78.8%), also granting higher objective and subjective image quality. • Deep learning image reconstruction algorithm can be safely implemented in routine abdominal CT protocols in place of iterative reconstruction." @default.
- W4386572246 created "2023-09-10" @default.
- W4386572246 creator A5009173680 @default.
- W4386572246 creator A5010944614 @default.
- W4386572246 creator A5025318079 @default.
- W4386572246 creator A5035571932 @default.
- W4386572246 creator A5048833495 @default.
- W4386572246 creator A5051029524 @default.
- W4386572246 creator A5052215618 @default.
- W4386572246 creator A5064004151 @default.
- W4386572246 creator A5067914502 @default.
- W4386572246 creator A5073790120 @default.
- W4386572246 creator A5082359958 @default.
- W4386572246 creator A5085999345 @default.
- W4386572246 creator A5092832671 @default.
- W4386572246 creator A5092832672 @default.
- W4386572246 date "2023-09-09" @default.
- W4386572246 modified "2023-10-16" @default.
- W4386572246 title "Low-dose liver CT: image quality and diagnostic accuracy of deep learning image reconstruction algorithm" @default.
- W4386572246 cites W1852587051 @default.
- W4386572246 cites W2034903235 @default.
- W4386572246 cites W2096380898 @default.
- W4386572246 cites W2138553139 @default.
- W4386572246 cites W2141834520 @default.
- W4386572246 cites W2352520963 @default.
- W4386572246 cites W2515620455 @default.
- W4386572246 cites W2600635922 @default.
- W4386572246 cites W2606142263 @default.
- W4386572246 cites W2736112965 @default.
- W4386572246 cites W2793186982 @default.
- W4386572246 cites W2899314786 @default.
- W4386572246 cites W2902429977 @default.
- W4386572246 cites W2936378778 @default.
- W4386572246 cites W2982444987 @default.
- W4386572246 cites W3000953045 @default.
- W4386572246 cites W3007407399 @default.
- W4386572246 cites W3045884753 @default.
- W4386572246 cites W3092795189 @default.
- W4386572246 cites W3110242322 @default.
- W4386572246 cites W3129055040 @default.
- W4386572246 cites W3136960285 @default.
- W4386572246 cites W3153385642 @default.
- W4386572246 cites W3163669177 @default.
- W4386572246 cites W3164294465 @default.
- W4386572246 cites W3168751186 @default.
- W4386572246 cites W3170211523 @default.
- W4386572246 cites W3213353811 @default.
- W4386572246 cites W4200161612 @default.
- W4386572246 cites W4205121737 @default.
- W4386572246 cites W4206457879 @default.
- W4386572246 cites W4214877435 @default.
- W4386572246 cites W4283376962 @default.
- W4386572246 doi "https://doi.org/10.1007/s00330-023-10171-8" @default.
- W4386572246 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37688618" @default.
- W4386572246 hasPublicationYear "2023" @default.
- W4386572246 type Work @default.
- W4386572246 citedByCount "0" @default.
- W4386572246 crossrefType "journal-article" @default.
- W4386572246 hasAuthorship W4386572246A5009173680 @default.
- W4386572246 hasAuthorship W4386572246A5010944614 @default.
- W4386572246 hasAuthorship W4386572246A5025318079 @default.
- W4386572246 hasAuthorship W4386572246A5035571932 @default.
- W4386572246 hasAuthorship W4386572246A5048833495 @default.
- W4386572246 hasAuthorship W4386572246A5051029524 @default.
- W4386572246 hasAuthorship W4386572246A5052215618 @default.
- W4386572246 hasAuthorship W4386572246A5064004151 @default.
- W4386572246 hasAuthorship W4386572246A5067914502 @default.
- W4386572246 hasAuthorship W4386572246A5073790120 @default.
- W4386572246 hasAuthorship W4386572246A5082359958 @default.
- W4386572246 hasAuthorship W4386572246A5085999345 @default.
- W4386572246 hasAuthorship W4386572246A5092832671 @default.
- W4386572246 hasAuthorship W4386572246A5092832672 @default.
- W4386572246 hasBestOaLocation W43865722461 @default.
- W4386572246 hasConcept C115961682 @default.
- W4386572246 hasConcept C118552586 @default.
- W4386572246 hasConcept C126838900 @default.
- W4386572246 hasConcept C141071460 @default.
- W4386572246 hasConcept C141379421 @default.
- W4386572246 hasConcept C143753070 @default.
- W4386572246 hasConcept C154945302 @default.
- W4386572246 hasConcept C16568411 @default.
- W4386572246 hasConcept C2779889316 @default.
- W4386572246 hasConcept C2781156865 @default.
- W4386572246 hasConcept C2989005 @default.
- W4386572246 hasConcept C3020132585 @default.
- W4386572246 hasConcept C41008148 @default.
- W4386572246 hasConcept C513090587 @default.
- W4386572246 hasConcept C55020928 @default.
- W4386572246 hasConcept C71924100 @default.
- W4386572246 hasConceptScore W4386572246C115961682 @default.
- W4386572246 hasConceptScore W4386572246C118552586 @default.
- W4386572246 hasConceptScore W4386572246C126838900 @default.
- W4386572246 hasConceptScore W4386572246C141071460 @default.
- W4386572246 hasConceptScore W4386572246C141379421 @default.
- W4386572246 hasConceptScore W4386572246C143753070 @default.
- W4386572246 hasConceptScore W4386572246C154945302 @default.
- W4386572246 hasConceptScore W4386572246C16568411 @default.
- W4386572246 hasConceptScore W4386572246C2779889316 @default.
- W4386572246 hasConceptScore W4386572246C2781156865 @default.
- W4386572246 hasConceptScore W4386572246C2989005 @default.