Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386572723> ?p ?o ?g. }
- W4386572723 endingPage "110958" @default.
- W4386572723 startingPage "110958" @default.
- W4386572723 abstract "Traditional deep learning fails to identify new faults when the number of faulty samples is limited. Existing meta-learning studies on cross-domain small-sample fault diagnosis do not fully account for the differences in the distribution of faults across domains between training data and new fault classes, which limits further performance improvement of the diagnosis model. In this study, we propose a new joint transfer fine-grained metric network for cross-domain few-shot fault diagnosis. First, a hybrid attention is used to enhance the feature extraction ability of the model and suppress redundant features. The proposed joint transfer function is used to align the corresponding subdomains of the source and target domains in small samples. Finally, cross-domain few-shot fault diagnostics is implemented using a modified fine-grained metric network. The proposed joint transfer fine-grained metric network outperformed other common meta-learning fault diagnosis methods on three mechanical device datasets." @default.
- W4386572723 created "2023-09-10" @default.
- W4386572723 creator A5013618345 @default.
- W4386572723 creator A5022429448 @default.
- W4386572723 creator A5023802967 @default.
- W4386572723 creator A5044470498 @default.
- W4386572723 date "2023-11-01" @default.
- W4386572723 modified "2023-10-09" @default.
- W4386572723 title "Novel joint transfer fine-grained metric network for cross-domain few-shot fault diagnosis" @default.
- W4386572723 cites W2115403315 @default.
- W4386572723 cites W2746111230 @default.
- W4386572723 cites W2887782657 @default.
- W4386572723 cites W2904218127 @default.
- W4386572723 cites W2905471643 @default.
- W4386572723 cites W2940935128 @default.
- W4386572723 cites W2953680418 @default.
- W4386572723 cites W2990705538 @default.
- W4386572723 cites W2998506103 @default.
- W4386572723 cites W3000094982 @default.
- W4386572723 cites W3025888249 @default.
- W4386572723 cites W3100057407 @default.
- W4386572723 cites W3126883438 @default.
- W4386572723 cites W3127617278 @default.
- W4386572723 cites W3134162419 @default.
- W4386572723 cites W3136651874 @default.
- W4386572723 cites W3137410503 @default.
- W4386572723 cites W3139302692 @default.
- W4386572723 cites W3209453546 @default.
- W4386572723 cites W3210213066 @default.
- W4386572723 cites W3212386989 @default.
- W4386572723 cites W3217212503 @default.
- W4386572723 cites W4200473862 @default.
- W4386572723 cites W4206495689 @default.
- W4386572723 cites W4226506636 @default.
- W4386572723 cites W4285245107 @default.
- W4386572723 cites W4309078085 @default.
- W4386572723 cites W4310858566 @default.
- W4386572723 cites W4315866203 @default.
- W4386572723 cites W4318677150 @default.
- W4386572723 cites W4318825746 @default.
- W4386572723 cites W4319594316 @default.
- W4386572723 cites W4383197506 @default.
- W4386572723 doi "https://doi.org/10.1016/j.knosys.2023.110958" @default.
- W4386572723 hasPublicationYear "2023" @default.
- W4386572723 type Work @default.
- W4386572723 citedByCount "0" @default.
- W4386572723 crossrefType "journal-article" @default.
- W4386572723 hasAuthorship W4386572723A5013618345 @default.
- W4386572723 hasAuthorship W4386572723A5022429448 @default.
- W4386572723 hasAuthorship W4386572723A5023802967 @default.
- W4386572723 hasAuthorship W4386572723A5044470498 @default.
- W4386572723 hasConcept C105795698 @default.
- W4386572723 hasConcept C119857082 @default.
- W4386572723 hasConcept C124101348 @default.
- W4386572723 hasConcept C127313418 @default.
- W4386572723 hasConcept C127413603 @default.
- W4386572723 hasConcept C134306372 @default.
- W4386572723 hasConcept C138885662 @default.
- W4386572723 hasConcept C150899416 @default.
- W4386572723 hasConcept C153180895 @default.
- W4386572723 hasConcept C154945302 @default.
- W4386572723 hasConcept C162324750 @default.
- W4386572723 hasConcept C165205528 @default.
- W4386572723 hasConcept C170154142 @default.
- W4386572723 hasConcept C175551986 @default.
- W4386572723 hasConcept C176217482 @default.
- W4386572723 hasConcept C18555067 @default.
- W4386572723 hasConcept C185592680 @default.
- W4386572723 hasConcept C18653775 @default.
- W4386572723 hasConcept C198531522 @default.
- W4386572723 hasConcept C21547014 @default.
- W4386572723 hasConcept C2776401178 @default.
- W4386572723 hasConcept C33923547 @default.
- W4386572723 hasConcept C36503486 @default.
- W4386572723 hasConcept C41008148 @default.
- W4386572723 hasConcept C41895202 @default.
- W4386572723 hasConcept C43617362 @default.
- W4386572723 hasConceptScore W4386572723C105795698 @default.
- W4386572723 hasConceptScore W4386572723C119857082 @default.
- W4386572723 hasConceptScore W4386572723C124101348 @default.
- W4386572723 hasConceptScore W4386572723C127313418 @default.
- W4386572723 hasConceptScore W4386572723C127413603 @default.
- W4386572723 hasConceptScore W4386572723C134306372 @default.
- W4386572723 hasConceptScore W4386572723C138885662 @default.
- W4386572723 hasConceptScore W4386572723C150899416 @default.
- W4386572723 hasConceptScore W4386572723C153180895 @default.
- W4386572723 hasConceptScore W4386572723C154945302 @default.
- W4386572723 hasConceptScore W4386572723C162324750 @default.
- W4386572723 hasConceptScore W4386572723C165205528 @default.
- W4386572723 hasConceptScore W4386572723C170154142 @default.
- W4386572723 hasConceptScore W4386572723C175551986 @default.
- W4386572723 hasConceptScore W4386572723C176217482 @default.
- W4386572723 hasConceptScore W4386572723C18555067 @default.
- W4386572723 hasConceptScore W4386572723C185592680 @default.
- W4386572723 hasConceptScore W4386572723C18653775 @default.
- W4386572723 hasConceptScore W4386572723C198531522 @default.
- W4386572723 hasConceptScore W4386572723C21547014 @default.
- W4386572723 hasConceptScore W4386572723C2776401178 @default.