Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386574039> ?p ?o ?g. }
- W4386574039 endingPage "113507" @default.
- W4386574039 startingPage "113507" @default.
- W4386574039 abstract "Predicting furnace temperature distribution is vital for coal-fired boiler safety. Existing methods, including finite element calculations and three-dimensional (3D) reconstruction still face limitations. A 3D combustion temperature field prediction method, GDNN, which utilizes offline-computed computational fluid dynamics (CFD) simulation results for online predictions of entire boiler, was proposed. GDNN method leverages the knowledge of the temperature field acquired by the base neural network model and gaussian processes, and utilizes probabilistic calculation to determine the predicted output as the maximum probability of temperature value. Experimental results demonstrate that the proposed method effectively avoids overfitting and exhibits the highest prediction accuracy among the comparative algorithms. Furthermore, a temperature field correction method is introduced, which employs intermediate variables of the GDNN model and measured values from temperature sensors to establish a correction model for the entire predicted temperature field. Experiments show that this correction effectively improves the overall boiler temperature field, particularly in areas such as the final superheater, final reheater, and economizer. The optimal parameters for predicting and correcting 3D furnace temperature field results were determined through experimental comparison, and the proposed method was applied to a 350 MW boiler, achieving an error of 2.41%, proving its real-world effectiveness." @default.
- W4386574039 created "2023-09-10" @default.
- W4386574039 creator A5002866587 @default.
- W4386574039 creator A5004179039 @default.
- W4386574039 creator A5017670090 @default.
- W4386574039 creator A5022069058 @default.
- W4386574039 creator A5030730343 @default.
- W4386574039 creator A5036016529 @default.
- W4386574039 creator A5087677473 @default.
- W4386574039 creator A5090698680 @default.
- W4386574039 date "2023-11-01" @default.
- W4386574039 modified "2023-10-02" @default.
- W4386574039 title "Efficient Online Prediction and Correction of 3D Combustion Temperature Field in Coal-Fired Boilers using GDNN" @default.
- W4386574039 cites W1977954800 @default.
- W4386574039 cites W1994005439 @default.
- W4386574039 cites W2015299209 @default.
- W4386574039 cites W2040511194 @default.
- W4386574039 cites W2045034683 @default.
- W4386574039 cites W2054181445 @default.
- W4386574039 cites W2066456137 @default.
- W4386574039 cites W2081049935 @default.
- W4386574039 cites W2087056985 @default.
- W4386574039 cites W2131288259 @default.
- W4386574039 cites W2210115971 @default.
- W4386574039 cites W2293477449 @default.
- W4386574039 cites W2328515494 @default.
- W4386574039 cites W2562716935 @default.
- W4386574039 cites W2678832859 @default.
- W4386574039 cites W2777304924 @default.
- W4386574039 cites W2800868039 @default.
- W4386574039 cites W2808410364 @default.
- W4386574039 cites W2883699276 @default.
- W4386574039 cites W2912740037 @default.
- W4386574039 cites W2953561990 @default.
- W4386574039 cites W2968728151 @default.
- W4386574039 cites W2973710883 @default.
- W4386574039 cites W3006437906 @default.
- W4386574039 cites W3040770726 @default.
- W4386574039 cites W3088398172 @default.
- W4386574039 cites W3108352318 @default.
- W4386574039 cites W3111542965 @default.
- W4386574039 cites W3115566278 @default.
- W4386574039 cites W3207041117 @default.
- W4386574039 cites W4210567265 @default.
- W4386574039 cites W4220899977 @default.
- W4386574039 cites W4225761136 @default.
- W4386574039 cites W4285678606 @default.
- W4386574039 cites W4287448571 @default.
- W4386574039 cites W4292084929 @default.
- W4386574039 cites W4293254197 @default.
- W4386574039 cites W4303438165 @default.
- W4386574039 cites W4323668772 @default.
- W4386574039 cites W4323923228 @default.
- W4386574039 cites W4367043115 @default.
- W4386574039 cites W4382881273 @default.
- W4386574039 cites W799451717 @default.
- W4386574039 doi "https://doi.org/10.1016/j.measurement.2023.113507" @default.
- W4386574039 hasPublicationYear "2023" @default.
- W4386574039 type Work @default.
- W4386574039 citedByCount "0" @default.
- W4386574039 crossrefType "journal-article" @default.
- W4386574039 hasAuthorship W4386574039A5002866587 @default.
- W4386574039 hasAuthorship W4386574039A5004179039 @default.
- W4386574039 hasAuthorship W4386574039A5017670090 @default.
- W4386574039 hasAuthorship W4386574039A5022069058 @default.
- W4386574039 hasAuthorship W4386574039A5030730343 @default.
- W4386574039 hasAuthorship W4386574039A5036016529 @default.
- W4386574039 hasAuthorship W4386574039A5087677473 @default.
- W4386574039 hasAuthorship W4386574039A5090698680 @default.
- W4386574039 hasConcept C105923489 @default.
- W4386574039 hasConcept C11413529 @default.
- W4386574039 hasConcept C121332964 @default.
- W4386574039 hasConcept C127413603 @default.
- W4386574039 hasConcept C146978453 @default.
- W4386574039 hasConcept C154945302 @default.
- W4386574039 hasConcept C1633027 @default.
- W4386574039 hasConcept C163716315 @default.
- W4386574039 hasConcept C178790620 @default.
- W4386574039 hasConcept C185592680 @default.
- W4386574039 hasConcept C22019652 @default.
- W4386574039 hasConcept C2780013297 @default.
- W4386574039 hasConcept C41008148 @default.
- W4386574039 hasConcept C50644808 @default.
- W4386574039 hasConcept C548081761 @default.
- W4386574039 hasConcept C62520636 @default.
- W4386574039 hasConcept C72293138 @default.
- W4386574039 hasConceptScore W4386574039C105923489 @default.
- W4386574039 hasConceptScore W4386574039C11413529 @default.
- W4386574039 hasConceptScore W4386574039C121332964 @default.
- W4386574039 hasConceptScore W4386574039C127413603 @default.
- W4386574039 hasConceptScore W4386574039C146978453 @default.
- W4386574039 hasConceptScore W4386574039C154945302 @default.
- W4386574039 hasConceptScore W4386574039C1633027 @default.
- W4386574039 hasConceptScore W4386574039C163716315 @default.
- W4386574039 hasConceptScore W4386574039C178790620 @default.
- W4386574039 hasConceptScore W4386574039C185592680 @default.
- W4386574039 hasConceptScore W4386574039C22019652 @default.
- W4386574039 hasConceptScore W4386574039C2780013297 @default.