Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386574714> ?p ?o ?g. }
- W4386574714 abstract "Low-fidelity, cost-effective, physics-based models are useful for assessing the environmental performance of novel combustion systems, especially those utilizing alternative fuels, like hydrogen and ammonia. However, these models require calibration and quantification of their limitations to be reliable predictive tools. This paper presents a framework for calibrating a simplified Chemical Reactor Network model using higher-fidelity Computational Fluid Dynamics data from a micro-gas-turbine-like combustor fuelled with pure ammonia. A Bayesian inference strategy that explicitly accounts for model error is used to calibrate the most relevant CRN parameters based on NO emissions data from CFD simulations and to estimate the model's structural uncertainty. The calibrated CRN model accurately predicts NO emissions within the design space and can extrapolate reasonably well to conditions outside the calibration range. By utilizing this framework, low-fidelity models can be employed to explore various operating conditions during the preliminary design of innovative combustion systems." @default.
- W4386574714 created "2023-09-10" @default.
- W4386574714 creator A5003181147 @default.
- W4386574714 creator A5012388266 @default.
- W4386574714 creator A5027186918 @default.
- W4386574714 creator A5031008443 @default.
- W4386574714 creator A5045895054 @default.
- W4386574714 creator A5071365808 @default.
- W4386574714 creator A5079434847 @default.
- W4386574714 date "2023-09-01" @default.
- W4386574714 modified "2023-10-18" @default.
- W4386574714 title "Model-to-model Bayesian calibration of a Chemical Reactor Network for pollutant emission predictions of an ammonia-fuelled multistage combustor" @default.
- W4386574714 cites W1552396428 @default.
- W4386574714 cites W1973333099 @default.
- W4386574714 cites W1992408492 @default.
- W4386574714 cites W1995780830 @default.
- W4386574714 cites W2001761858 @default.
- W4386574714 cites W2004266299 @default.
- W4386574714 cites W2016972278 @default.
- W4386574714 cites W2017880874 @default.
- W4386574714 cites W2018844660 @default.
- W4386574714 cites W2046100676 @default.
- W4386574714 cites W2052048092 @default.
- W4386574714 cites W2052716708 @default.
- W4386574714 cites W2055081012 @default.
- W4386574714 cites W2076611253 @default.
- W4386574714 cites W2090171599 @default.
- W4386574714 cites W2280171397 @default.
- W4386574714 cites W2332123610 @default.
- W4386574714 cites W2595802379 @default.
- W4386574714 cites W2743801019 @default.
- W4386574714 cites W2766368062 @default.
- W4386574714 cites W2776140038 @default.
- W4386574714 cites W2783036252 @default.
- W4386574714 cites W2793625497 @default.
- W4386574714 cites W2810589290 @default.
- W4386574714 cites W2887679581 @default.
- W4386574714 cites W2892664059 @default.
- W4386574714 cites W2900226406 @default.
- W4386574714 cites W2920606049 @default.
- W4386574714 cites W2963142544 @default.
- W4386574714 cites W3000384972 @default.
- W4386574714 cites W3012050058 @default.
- W4386574714 cites W3105269989 @default.
- W4386574714 cites W3117004174 @default.
- W4386574714 cites W3125364501 @default.
- W4386574714 cites W3127862051 @default.
- W4386574714 cites W3134967399 @default.
- W4386574714 cites W3149614014 @default.
- W4386574714 cites W3165659562 @default.
- W4386574714 cites W3168838301 @default.
- W4386574714 cites W3184749280 @default.
- W4386574714 cites W3189069955 @default.
- W4386574714 cites W3190514630 @default.
- W4386574714 cites W4212824250 @default.
- W4386574714 cites W4214631388 @default.
- W4386574714 cites W4220781468 @default.
- W4386574714 cites W4238357543 @default.
- W4386574714 cites W4286436681 @default.
- W4386574714 cites W4298325763 @default.
- W4386574714 cites W4302359568 @default.
- W4386574714 cites W4302760264 @default.
- W4386574714 cites W4322806580 @default.
- W4386574714 cites W4384831156 @default.
- W4386574714 doi "https://doi.org/10.1016/j.ijhydene.2023.08.275" @default.
- W4386574714 hasPublicationYear "2023" @default.
- W4386574714 type Work @default.
- W4386574714 citedByCount "0" @default.
- W4386574714 crossrefType "journal-article" @default.
- W4386574714 hasAuthorship W4386574714A5003181147 @default.
- W4386574714 hasAuthorship W4386574714A5012388266 @default.
- W4386574714 hasAuthorship W4386574714A5027186918 @default.
- W4386574714 hasAuthorship W4386574714A5031008443 @default.
- W4386574714 hasAuthorship W4386574714A5045895054 @default.
- W4386574714 hasAuthorship W4386574714A5071365808 @default.
- W4386574714 hasAuthorship W4386574714A5079434847 @default.
- W4386574714 hasConcept C105923489 @default.
- W4386574714 hasConcept C107673813 @default.
- W4386574714 hasConcept C121332964 @default.
- W4386574714 hasConcept C127413603 @default.
- W4386574714 hasConcept C146978453 @default.
- W4386574714 hasConcept C154945302 @default.
- W4386574714 hasConcept C160234255 @default.
- W4386574714 hasConcept C165838908 @default.
- W4386574714 hasConcept C178790620 @default.
- W4386574714 hasConcept C185592680 @default.
- W4386574714 hasConcept C204323151 @default.
- W4386574714 hasConcept C21880701 @default.
- W4386574714 hasConcept C41008148 @default.
- W4386574714 hasConcept C62520636 @default.
- W4386574714 hasConcept C83104080 @default.
- W4386574714 hasConceptScore W4386574714C105923489 @default.
- W4386574714 hasConceptScore W4386574714C107673813 @default.
- W4386574714 hasConceptScore W4386574714C121332964 @default.
- W4386574714 hasConceptScore W4386574714C127413603 @default.
- W4386574714 hasConceptScore W4386574714C146978453 @default.
- W4386574714 hasConceptScore W4386574714C154945302 @default.
- W4386574714 hasConceptScore W4386574714C160234255 @default.
- W4386574714 hasConceptScore W4386574714C165838908 @default.
- W4386574714 hasConceptScore W4386574714C178790620 @default.