Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386574932> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4386574932 endingPage "394" @default.
- W4386574932 startingPage "380" @default.
- W4386574932 abstract "Textual password is one of the most important authentic means used in modern information systems and password cracking is an important means of measuring password strength. Recently, data-driven approaches are proposed in order to improve the efficiency and accuracy of the password guessing process. These methods usually train a model based on leaked password datasets so as to capture the internal patterns hidden behind the human created passwords, and most of them focus on the relationships between characters within a password. In this article, we emphasizes that the character relations between passwords need also to be considered. We treat a password as a sequence of chunks or segments, which is a small sub-string of the password and appears frequently in a password dataset. Instead of modeling the relations of chunks within a password, we proposed a method, which selects a seed password from a training set, breaks the seed password into chunks, and then generates new passwords by choosing a chunk and replacing it with another one according to their similarities. Several experiments are conducted on three password datasets so as to evaluate different aspects of the proposed approach. The results show that the proposed method is comparable with the state of the art approaches, such as PassGAN, DPG, FLA and PCFG v4.3, which is the latest version of PCFG. The results also revealed that chunk level relations between passwords play an important role in the process of password creation." @default.
- W4386574932 created "2023-09-10" @default.
- W4386574932 creator A5033942218 @default.
- W4386574932 creator A5038836690 @default.
- W4386574932 creator A5051839532 @default.
- W4386574932 creator A5066389677 @default.
- W4386574932 creator A5075152714 @default.
- W4386574932 creator A5077663612 @default.
- W4386574932 date "2024-01-01" @default.
- W4386574932 modified "2023-09-27" @default.
- W4386574932 title "Password cracking using chunk similarity" @default.
- W4386574932 cites W2036439773 @default.
- W4386574932 cites W2080051698 @default.
- W4386574932 cites W2086553822 @default.
- W4386574932 cites W2516977846 @default.
- W4386574932 cites W2734150319 @default.
- W4386574932 cites W3000394605 @default.
- W4386574932 cites W3029837356 @default.
- W4386574932 cites W3034080962 @default.
- W4386574932 cites W3193814909 @default.
- W4386574932 cites W3212185415 @default.
- W4386574932 cites W4205610099 @default.
- W4386574932 cites W4283163315 @default.
- W4386574932 cites W4285266886 @default.
- W4386574932 cites W4295162130 @default.
- W4386574932 doi "https://doi.org/10.1016/j.future.2023.09.013" @default.
- W4386574932 hasPublicationYear "2024" @default.
- W4386574932 type Work @default.
- W4386574932 citedByCount "0" @default.
- W4386574932 crossrefType "journal-article" @default.
- W4386574932 hasAuthorship W4386574932A5033942218 @default.
- W4386574932 hasAuthorship W4386574932A5038836690 @default.
- W4386574932 hasAuthorship W4386574932A5051839532 @default.
- W4386574932 hasAuthorship W4386574932A5066389677 @default.
- W4386574932 hasAuthorship W4386574932A5075152714 @default.
- W4386574932 hasAuthorship W4386574932A5077663612 @default.
- W4386574932 hasConcept C103278499 @default.
- W4386574932 hasConcept C109297577 @default.
- W4386574932 hasConcept C115961682 @default.
- W4386574932 hasConcept C154945302 @default.
- W4386574932 hasConcept C157486923 @default.
- W4386574932 hasConcept C199360897 @default.
- W4386574932 hasConcept C23875713 @default.
- W4386574932 hasConcept C33923547 @default.
- W4386574932 hasConcept C37914503 @default.
- W4386574932 hasConcept C3847113 @default.
- W4386574932 hasConcept C38652104 @default.
- W4386574932 hasConcept C41008148 @default.
- W4386574932 hasConcept C4957475 @default.
- W4386574932 hasConcept C70530487 @default.
- W4386574932 hasConcept C89479133 @default.
- W4386574932 hasConcept C98045186 @default.
- W4386574932 hasConceptScore W4386574932C103278499 @default.
- W4386574932 hasConceptScore W4386574932C109297577 @default.
- W4386574932 hasConceptScore W4386574932C115961682 @default.
- W4386574932 hasConceptScore W4386574932C154945302 @default.
- W4386574932 hasConceptScore W4386574932C157486923 @default.
- W4386574932 hasConceptScore W4386574932C199360897 @default.
- W4386574932 hasConceptScore W4386574932C23875713 @default.
- W4386574932 hasConceptScore W4386574932C33923547 @default.
- W4386574932 hasConceptScore W4386574932C37914503 @default.
- W4386574932 hasConceptScore W4386574932C3847113 @default.
- W4386574932 hasConceptScore W4386574932C38652104 @default.
- W4386574932 hasConceptScore W4386574932C41008148 @default.
- W4386574932 hasConceptScore W4386574932C4957475 @default.
- W4386574932 hasConceptScore W4386574932C70530487 @default.
- W4386574932 hasConceptScore W4386574932C89479133 @default.
- W4386574932 hasConceptScore W4386574932C98045186 @default.
- W4386574932 hasLocation W43865749321 @default.
- W4386574932 hasOpenAccess W4386574932 @default.
- W4386574932 hasPrimaryLocation W43865749321 @default.
- W4386574932 hasRelatedWork W2021087413 @default.
- W4386574932 hasRelatedWork W2058558042 @default.
- W4386574932 hasRelatedWork W2079990687 @default.
- W4386574932 hasRelatedWork W2953105088 @default.
- W4386574932 hasRelatedWork W2969720675 @default.
- W4386574932 hasRelatedWork W2993348482 @default.
- W4386574932 hasRelatedWork W4283835082 @default.
- W4386574932 hasRelatedWork W1844709308 @default.
- W4386574932 hasRelatedWork W2185274381 @default.
- W4386574932 hasRelatedWork W2576022878 @default.
- W4386574932 hasVolume "150" @default.
- W4386574932 isParatext "false" @default.
- W4386574932 isRetracted "false" @default.
- W4386574932 workType "article" @default.