Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386578997> ?p ?o ?g. }
- W4386578997 endingPage "25887" @default.
- W4386578997 startingPage "25863" @default.
- W4386578997 abstract "<abstract><p>Nonlinear fractional differential equations and chaotic systems can be modeled with variable-order differential operators. We propose a generalized numerical scheme to simulate variable-order fractional differential operators. Fractional calculus' fundamental theorem and Lagrange polynomial interpolation are used. Two methods, Atangana-Baleanu-Caputo and Atangana-Seda derivatives, were used to solve a chaotic Newton-Leipnik system problem with fractional operators. Our scheme examined the existence and uniqueness of the solution. We analyze the model qualitatively using its equivalent integral through an iterative convergence sequence. This novel method is illustrated with numerical examples. Simulated and analytical results agree. We contribute to real-world mathematical applications. Finally, we applied a numerical successive approximation method to solve the fractional model.</p></abstract>" @default.
- W4386578997 created "2023-09-10" @default.
- W4386578997 creator A5032800535 @default.
- W4386578997 creator A5051859466 @default.
- W4386578997 date "2023-01-01" @default.
- W4386578997 modified "2023-09-29" @default.
- W4386578997 title "Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives" @default.
- W4386578997 cites W1969399740 @default.
- W4386578997 cites W1971609228 @default.
- W4386578997 cites W1974514718 @default.
- W4386578997 cites W1985037772 @default.
- W4386578997 cites W1991089620 @default.
- W4386578997 cites W2006472812 @default.
- W4386578997 cites W2011362250 @default.
- W4386578997 cites W2021735811 @default.
- W4386578997 cites W2023271514 @default.
- W4386578997 cites W2027497334 @default.
- W4386578997 cites W2036356861 @default.
- W4386578997 cites W2036891784 @default.
- W4386578997 cites W2051063808 @default.
- W4386578997 cites W2054709933 @default.
- W4386578997 cites W2063907815 @default.
- W4386578997 cites W2075551360 @default.
- W4386578997 cites W2088913250 @default.
- W4386578997 cites W2109367300 @default.
- W4386578997 cites W2152008523 @default.
- W4386578997 cites W2277623713 @default.
- W4386578997 cites W2294543173 @default.
- W4386578997 cites W2738821798 @default.
- W4386578997 cites W2773396578 @default.
- W4386578997 cites W2793683090 @default.
- W4386578997 cites W2796202420 @default.
- W4386578997 cites W2800088707 @default.
- W4386578997 cites W2802584690 @default.
- W4386578997 cites W2883589886 @default.
- W4386578997 cites W2980138570 @default.
- W4386578997 cites W2988508489 @default.
- W4386578997 cites W2995962024 @default.
- W4386578997 cites W3027645126 @default.
- W4386578997 cites W3087352120 @default.
- W4386578997 cites W3091960162 @default.
- W4386578997 cites W3100416210 @default.
- W4386578997 cites W3123568166 @default.
- W4386578997 cites W3162775271 @default.
- W4386578997 cites W3167604196 @default.
- W4386578997 cites W3168675894 @default.
- W4386578997 cites W3201758049 @default.
- W4386578997 cites W3217073635 @default.
- W4386578997 cites W4224128871 @default.
- W4386578997 cites W4224591807 @default.
- W4386578997 cites W4226292637 @default.
- W4386578997 cites W4229334710 @default.
- W4386578997 cites W4237388375 @default.
- W4386578997 cites W4281737107 @default.
- W4386578997 cites W4281737339 @default.
- W4386578997 cites W4282968495 @default.
- W4386578997 cites W4283069254 @default.
- W4386578997 cites W4292260715 @default.
- W4386578997 cites W4298092178 @default.
- W4386578997 cites W4298621394 @default.
- W4386578997 cites W4300917053 @default.
- W4386578997 cites W4302436130 @default.
- W4386578997 cites W4376273499 @default.
- W4386578997 cites W4386133205 @default.
- W4386578997 cites W4386306551 @default.
- W4386578997 doi "https://doi.org/10.3934/math.20231319" @default.
- W4386578997 hasPublicationYear "2023" @default.
- W4386578997 type Work @default.
- W4386578997 citedByCount "0" @default.
- W4386578997 crossrefType "journal-article" @default.
- W4386578997 hasAuthorship W4386578997A5032800535 @default.
- W4386578997 hasAuthorship W4386578997A5051859466 @default.
- W4386578997 hasBestOaLocation W43865789971 @default.
- W4386578997 hasConcept C121332964 @default.
- W4386578997 hasConcept C134306372 @default.
- W4386578997 hasConcept C154249771 @default.
- W4386578997 hasConcept C154945302 @default.
- W4386578997 hasConcept C158622935 @default.
- W4386578997 hasConcept C162324750 @default.
- W4386578997 hasConcept C182365436 @default.
- W4386578997 hasConcept C2777021972 @default.
- W4386578997 hasConcept C2777052490 @default.
- W4386578997 hasConcept C2777303404 @default.
- W4386578997 hasConcept C2778112365 @default.
- W4386578997 hasConcept C28826006 @default.
- W4386578997 hasConcept C33923547 @default.
- W4386578997 hasConcept C41008148 @default.
- W4386578997 hasConcept C48753275 @default.
- W4386578997 hasConcept C50522688 @default.
- W4386578997 hasConcept C54355233 @default.
- W4386578997 hasConcept C62520636 @default.
- W4386578997 hasConcept C64208722 @default.
- W4386578997 hasConcept C85189116 @default.
- W4386578997 hasConcept C86803240 @default.
- W4386578997 hasConcept C90119067 @default.
- W4386578997 hasConceptScore W4386578997C121332964 @default.
- W4386578997 hasConceptScore W4386578997C134306372 @default.
- W4386578997 hasConceptScore W4386578997C154249771 @default.