Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386579882> ?p ?o ?g. }
- W4386579882 endingPage "25862" @default.
- W4386579882 startingPage "25845" @default.
- W4386579882 abstract "<abstract><p>This paper focuses on novel approaches to finding solitary wave (SW) solutions for the modified Degasperis-Procesi and fractionally modified Camassa-Holm equations. The study presents two innovative methodologies: the Yang transformation decomposition technique and the homotopy perturbation transformation method. These methods use the Caputo sense fractional order derivative, the Yang transformation, the adomian decomposition technique, and the homotopy perturbation method. The inquiry effectively solves the fractional Camassa-Holm and Degasperis-Procesi equations, which also provides a detailed numerical and graphical comparison of the solutions found. The results, which include accurate solutions, derived solutions, and absolute error displayed in tabular style, demonstrate the effectiveness of the suggested procedures. These procedures are iterative, which results in several answers. The estimated absolute error attests to the correctness and simplicity of these solutions. Especially in plasma physics, these approaches may be expanded to handle various linear and nonlinear physical issues, including the evolution equations controlling nonlinear waves.</p></abstract>" @default.
- W4386579882 created "2023-09-10" @default.
- W4386579882 creator A5025410525 @default.
- W4386579882 creator A5046556492 @default.
- W4386579882 creator A5073618315 @default.
- W4386579882 creator A5076196144 @default.
- W4386579882 creator A5083354054 @default.
- W4386579882 date "2023-01-01" @default.
- W4386579882 modified "2023-10-11" @default.
- W4386579882 title "Fractional comparative analysis of Camassa-Holm and Degasperis-Procesi equations" @default.
- W4386579882 cites W1418158239 @default.
- W4386579882 cites W1967703687 @default.
- W4386579882 cites W1983959946 @default.
- W4386579882 cites W1991833609 @default.
- W4386579882 cites W2042970889 @default.
- W4386579882 cites W2045231411 @default.
- W4386579882 cites W2046761541 @default.
- W4386579882 cites W2048322459 @default.
- W4386579882 cites W2066693071 @default.
- W4386579882 cites W2127769310 @default.
- W4386579882 cites W2182579072 @default.
- W4386579882 cites W2301688166 @default.
- W4386579882 cites W2521146637 @default.
- W4386579882 cites W2744953953 @default.
- W4386579882 cites W2796292234 @default.
- W4386579882 cites W2807136172 @default.
- W4386579882 cites W2885465254 @default.
- W4386579882 cites W2906700374 @default.
- W4386579882 cites W3207401169 @default.
- W4386579882 cites W3212917675 @default.
- W4386579882 cites W3215566709 @default.
- W4386579882 cites W4200028074 @default.
- W4386579882 cites W4205372319 @default.
- W4386579882 cites W4210413586 @default.
- W4386579882 cites W4210573062 @default.
- W4386579882 cites W4211052487 @default.
- W4386579882 cites W4280490815 @default.
- W4386579882 cites W4280501108 @default.
- W4386579882 cites W4282833940 @default.
- W4386579882 cites W4283377895 @default.
- W4386579882 cites W4292737345 @default.
- W4386579882 cites W4309309998 @default.
- W4386579882 cites W4309329690 @default.
- W4386579882 cites W4312696388 @default.
- W4386579882 cites W4323362356 @default.
- W4386579882 cites W4323568963 @default.
- W4386579882 cites W4361268588 @default.
- W4386579882 cites W4364377616 @default.
- W4386579882 cites W4378469080 @default.
- W4386579882 cites W4380046541 @default.
- W4386579882 cites W4381108707 @default.
- W4386579882 cites W4381598461 @default.
- W4386579882 cites W4381665988 @default.
- W4386579882 cites W4382722246 @default.
- W4386579882 cites W4383746600 @default.
- W4386579882 cites W4385062256 @default.
- W4386579882 doi "https://doi.org/10.3934/math.20231318" @default.
- W4386579882 hasPublicationYear "2023" @default.
- W4386579882 type Work @default.
- W4386579882 citedByCount "2" @default.
- W4386579882 countsByYear W43865798822023 @default.
- W4386579882 crossrefType "journal-article" @default.
- W4386579882 hasAuthorship W4386579882A5025410525 @default.
- W4386579882 hasAuthorship W4386579882A5046556492 @default.
- W4386579882 hasAuthorship W4386579882A5073618315 @default.
- W4386579882 hasAuthorship W4386579882A5076196144 @default.
- W4386579882 hasAuthorship W4386579882A5083354054 @default.
- W4386579882 hasBestOaLocation W43865798821 @default.
- W4386579882 hasConcept C104317684 @default.
- W4386579882 hasConcept C11413529 @default.
- W4386579882 hasConcept C120317633 @default.
- W4386579882 hasConcept C121332964 @default.
- W4386579882 hasConcept C134306372 @default.
- W4386579882 hasConcept C146630112 @default.
- W4386579882 hasConcept C158622935 @default.
- W4386579882 hasConcept C173636693 @default.
- W4386579882 hasConcept C177918212 @default.
- W4386579882 hasConcept C185592680 @default.
- W4386579882 hasConcept C202444582 @default.
- W4386579882 hasConcept C204241405 @default.
- W4386579882 hasConcept C28826006 @default.
- W4386579882 hasConcept C33923547 @default.
- W4386579882 hasConcept C55439883 @default.
- W4386579882 hasConcept C55493867 @default.
- W4386579882 hasConcept C5961521 @default.
- W4386579882 hasConcept C62520636 @default.
- W4386579882 hasConcept C91328119 @default.
- W4386579882 hasConcept C93779851 @default.
- W4386579882 hasConceptScore W4386579882C104317684 @default.
- W4386579882 hasConceptScore W4386579882C11413529 @default.
- W4386579882 hasConceptScore W4386579882C120317633 @default.
- W4386579882 hasConceptScore W4386579882C121332964 @default.
- W4386579882 hasConceptScore W4386579882C134306372 @default.
- W4386579882 hasConceptScore W4386579882C146630112 @default.
- W4386579882 hasConceptScore W4386579882C158622935 @default.
- W4386579882 hasConceptScore W4386579882C173636693 @default.
- W4386579882 hasConceptScore W4386579882C177918212 @default.
- W4386579882 hasConceptScore W4386579882C185592680 @default.