Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386585691> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4386585691 endingPage "271" @default.
- W4386585691 startingPage "193" @default.
- W4386585691 abstract "Manifold learning, also known as nonlinear dimensionality reduction or nonlinear embedding, is a set of techniques in machine learning and data analysis that aims to uncover the underlying structure or geometry of high-dimensional data in a lower-dimensional space. In mechanical field, faults often introduce subtle changes in the data patterns, making it difficult to identify them using traditional methods. Manifold learning can help capture these subtle changes by representing the data in a lower-dimensional space that emphasizes the fault-related variations and become a valuable technique in fault diagnosis. This chapter addresses a variety of intelligent fault diagnosis and prognosis methods based on manifold learning, including spectral clustering manifold-based fault feature selection, locally linear embedding (LLE)-based fault recognition, and distance-preserving projection-based fault classification. These methods are applied to the fault diagnosis and prognosis of gears, rolling bearings, engines, etc., and the effectiveness is verified by case studies." @default.
- W4386585691 created "2023-09-11" @default.
- W4386585691 creator A5011148961 @default.
- W4386585691 creator A5052022256 @default.
- W4386585691 creator A5053081284 @default.
- W4386585691 date "2023-01-01" @default.
- W4386585691 modified "2023-09-29" @default.
- W4386585691 title "Manifold Learning Based Intelligent Fault Diagnosis and Prognosis" @default.
- W4386585691 cites W1479807131 @default.
- W4386585691 cites W1491561105 @default.
- W4386585691 cites W1578196132 @default.
- W4386585691 cites W1587744656 @default.
- W4386585691 cites W1755467358 @default.
- W4386585691 cites W1969989373 @default.
- W4386585691 cites W2001141328 @default.
- W4386585691 cites W2053186076 @default.
- W4386585691 cites W2058232500 @default.
- W4386585691 cites W2121947440 @default.
- W4386585691 cites W4245176872 @default.
- W4386585691 doi "https://doi.org/10.1007/978-981-99-3537-6_4" @default.
- W4386585691 hasPublicationYear "2023" @default.
- W4386585691 type Work @default.
- W4386585691 citedByCount "0" @default.
- W4386585691 crossrefType "book-chapter" @default.
- W4386585691 hasAuthorship W4386585691A5011148961 @default.
- W4386585691 hasAuthorship W4386585691A5052022256 @default.
- W4386585691 hasAuthorship W4386585691A5053081284 @default.
- W4386585691 hasConcept C111030470 @default.
- W4386585691 hasConcept C11413529 @default.
- W4386585691 hasConcept C119857082 @default.
- W4386585691 hasConcept C121332964 @default.
- W4386585691 hasConcept C127313418 @default.
- W4386585691 hasConcept C127413603 @default.
- W4386585691 hasConcept C151876577 @default.
- W4386585691 hasConcept C153180895 @default.
- W4386585691 hasConcept C154945302 @default.
- W4386585691 hasConcept C158622935 @default.
- W4386585691 hasConcept C165205528 @default.
- W4386585691 hasConcept C175551986 @default.
- W4386585691 hasConcept C202444582 @default.
- W4386585691 hasConcept C33923547 @default.
- W4386585691 hasConcept C41008148 @default.
- W4386585691 hasConcept C41608201 @default.
- W4386585691 hasConcept C529865628 @default.
- W4386585691 hasConcept C57493831 @default.
- W4386585691 hasConcept C62520636 @default.
- W4386585691 hasConcept C70518039 @default.
- W4386585691 hasConcept C73555534 @default.
- W4386585691 hasConcept C78519656 @default.
- W4386585691 hasConcept C9652623 @default.
- W4386585691 hasConceptScore W4386585691C111030470 @default.
- W4386585691 hasConceptScore W4386585691C11413529 @default.
- W4386585691 hasConceptScore W4386585691C119857082 @default.
- W4386585691 hasConceptScore W4386585691C121332964 @default.
- W4386585691 hasConceptScore W4386585691C127313418 @default.
- W4386585691 hasConceptScore W4386585691C127413603 @default.
- W4386585691 hasConceptScore W4386585691C151876577 @default.
- W4386585691 hasConceptScore W4386585691C153180895 @default.
- W4386585691 hasConceptScore W4386585691C154945302 @default.
- W4386585691 hasConceptScore W4386585691C158622935 @default.
- W4386585691 hasConceptScore W4386585691C165205528 @default.
- W4386585691 hasConceptScore W4386585691C175551986 @default.
- W4386585691 hasConceptScore W4386585691C202444582 @default.
- W4386585691 hasConceptScore W4386585691C33923547 @default.
- W4386585691 hasConceptScore W4386585691C41008148 @default.
- W4386585691 hasConceptScore W4386585691C41608201 @default.
- W4386585691 hasConceptScore W4386585691C529865628 @default.
- W4386585691 hasConceptScore W4386585691C57493831 @default.
- W4386585691 hasConceptScore W4386585691C62520636 @default.
- W4386585691 hasConceptScore W4386585691C70518039 @default.
- W4386585691 hasConceptScore W4386585691C73555534 @default.
- W4386585691 hasConceptScore W4386585691C78519656 @default.
- W4386585691 hasConceptScore W4386585691C9652623 @default.
- W4386585691 hasLocation W43865856911 @default.
- W4386585691 hasOpenAccess W4386585691 @default.
- W4386585691 hasPrimaryLocation W43865856911 @default.
- W4386585691 hasRelatedWork W117517268 @default.
- W4386585691 hasRelatedWork W1973666623 @default.
- W4386585691 hasRelatedWork W2047382418 @default.
- W4386585691 hasRelatedWork W2053907657 @default.
- W4386585691 hasRelatedWork W2150711601 @default.
- W4386585691 hasRelatedWork W2362829263 @default.
- W4386585691 hasRelatedWork W2364156185 @default.
- W4386585691 hasRelatedWork W2380996235 @default.
- W4386585691 hasRelatedWork W2383239174 @default.
- W4386585691 hasRelatedWork W2573981081 @default.
- W4386585691 isParatext "false" @default.
- W4386585691 isRetracted "false" @default.
- W4386585691 workType "book-chapter" @default.