Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386590930> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4386590930 endingPage "99386" @default.
- W4386590930 startingPage "99376" @default.
- W4386590930 abstract "Since the outbreak of the COVID-19 crisis, transition to remote education presented several challenges to educational institutions. Unlike face-to-face classes where educators can modify and keep track of the lessons and content according to the students’ observed emotions and participation, such activities are difficult to complete in online learning environments. To address this issue, we propose here a novel and comprehensive framework that leverages advanced computer vision and analysis techniques to detect students’ emotions during online learning and assess their state of mind regarding the taught content. Our framework is composed of three modules. The first module uses a novel lightweight machine learning method, called convolutional neural network-random forest (CNN-RF), to efficiently detect the students’ basic emotions, e.g., sad, happy, etc., during the online course. Our approach surpasses existing benchmarks in terms of accuracy (over 71%) on the FER-2013 dataset, while being less complex (i.e., using a smaller number of parameters). The second module consists of mapping the basic emotions to an education-aware state of mind, e.g., interest, boredom, distraction, etc. Unlike the few works that proposed simplistic mapping, we propose here a Plutchik wheel’s inspired mapping system, which is more precise and reflects better the relationship between combinations of basic emotions and the resulting education-aware state of mind. Thus, our understanding of the students’ cognitive and affective experiences during online learning can be enhanced. The third module is a visualization dashboard that offers clear and intuitive real-time representations of basic emotions and states of mind. This tool provides educators with invaluable insights into students’ emotional dynamics, enabling them to identify learning difficulties with high precision and make informed recommendations for improvements in course content and online teaching methods. In summary, the proposed framework presents a novel and powerful tool that addresses the challenges related to online learning. By accurately detecting the students’ emotions, assessing their states of mind, and providing real-time visualization, our approach represents a significant advancement toward the optimization of online education, which is critically needed in rural and remote areas of the globe." @default.
- W4386590930 created "2023-09-11" @default.
- W4386590930 creator A5021349871 @default.
- W4386590930 creator A5023438756 @default.
- W4386590930 creator A5035446029 @default.
- W4386590930 creator A5070352139 @default.
- W4386590930 creator A5092842684 @default.
- W4386590930 date "2023-01-01" @default.
- W4386590930 modified "2023-09-27" @default.
- W4386590930 title "Video Traffic Analysis for Real-Time Emotion Recognition and Visualization in Online Learning" @default.
- W4386590930 cites W1966797434 @default.
- W4386590930 cites W1998476814 @default.
- W4386590930 cites W2041616772 @default.
- W4386590930 cites W2132658790 @default.
- W4386590930 cites W2556844902 @default.
- W4386590930 cites W2913942704 @default.
- W4386590930 cites W2919890647 @default.
- W4386590930 cites W2945519542 @default.
- W4386590930 cites W2946480720 @default.
- W4386590930 cites W2993742162 @default.
- W4386590930 cites W3009386672 @default.
- W4386590930 cites W3019685876 @default.
- W4386590930 cites W3022445612 @default.
- W4386590930 cites W3046605101 @default.
- W4386590930 cites W3047189009 @default.
- W4386590930 cites W3047531582 @default.
- W4386590930 cites W3092190099 @default.
- W4386590930 cites W3163942116 @default.
- W4386590930 cites W3207292572 @default.
- W4386590930 cites W4205741333 @default.
- W4386590930 cites W4255441728 @default.
- W4386590930 cites W4281697029 @default.
- W4386590930 cites W4322739616 @default.
- W4386590930 doi "https://doi.org/10.1109/access.2023.3313973" @default.
- W4386590930 hasPublicationYear "2023" @default.
- W4386590930 type Work @default.
- W4386590930 citedByCount "0" @default.
- W4386590930 crossrefType "journal-article" @default.
- W4386590930 hasAuthorship W4386590930A5021349871 @default.
- W4386590930 hasAuthorship W4386590930A5023438756 @default.
- W4386590930 hasAuthorship W4386590930A5035446029 @default.
- W4386590930 hasAuthorship W4386590930A5070352139 @default.
- W4386590930 hasAuthorship W4386590930A5092842684 @default.
- W4386590930 hasBestOaLocation W43865909301 @default.
- W4386590930 hasConcept C107457646 @default.
- W4386590930 hasConcept C108583219 @default.
- W4386590930 hasConcept C144024400 @default.
- W4386590930 hasConcept C154945302 @default.
- W4386590930 hasConcept C15744967 @default.
- W4386590930 hasConcept C180747234 @default.
- W4386590930 hasConcept C2522767166 @default.
- W4386590930 hasConcept C2776378700 @default.
- W4386590930 hasConcept C2777589236 @default.
- W4386590930 hasConcept C2779304628 @default.
- W4386590930 hasConcept C33499554 @default.
- W4386590930 hasConcept C36289849 @default.
- W4386590930 hasConcept C36464697 @default.
- W4386590930 hasConcept C41008148 @default.
- W4386590930 hasConcept C49774154 @default.
- W4386590930 hasConcept C66402592 @default.
- W4386590930 hasConcept C77805123 @default.
- W4386590930 hasConcept C81363708 @default.
- W4386590930 hasConceptScore W4386590930C107457646 @default.
- W4386590930 hasConceptScore W4386590930C108583219 @default.
- W4386590930 hasConceptScore W4386590930C144024400 @default.
- W4386590930 hasConceptScore W4386590930C154945302 @default.
- W4386590930 hasConceptScore W4386590930C15744967 @default.
- W4386590930 hasConceptScore W4386590930C180747234 @default.
- W4386590930 hasConceptScore W4386590930C2522767166 @default.
- W4386590930 hasConceptScore W4386590930C2776378700 @default.
- W4386590930 hasConceptScore W4386590930C2777589236 @default.
- W4386590930 hasConceptScore W4386590930C2779304628 @default.
- W4386590930 hasConceptScore W4386590930C33499554 @default.
- W4386590930 hasConceptScore W4386590930C36289849 @default.
- W4386590930 hasConceptScore W4386590930C36464697 @default.
- W4386590930 hasConceptScore W4386590930C41008148 @default.
- W4386590930 hasConceptScore W4386590930C49774154 @default.
- W4386590930 hasConceptScore W4386590930C66402592 @default.
- W4386590930 hasConceptScore W4386590930C77805123 @default.
- W4386590930 hasConceptScore W4386590930C81363708 @default.
- W4386590930 hasLocation W43865909301 @default.
- W4386590930 hasOpenAccess W4386590930 @default.
- W4386590930 hasPrimaryLocation W43865909301 @default.
- W4386590930 hasRelatedWork W2731899572 @default.
- W4386590930 hasRelatedWork W2999805992 @default.
- W4386590930 hasRelatedWork W3000866861 @default.
- W4386590930 hasRelatedWork W3011074480 @default.
- W4386590930 hasRelatedWork W3116150086 @default.
- W4386590930 hasRelatedWork W3133861977 @default.
- W4386590930 hasRelatedWork W4200173597 @default.
- W4386590930 hasRelatedWork W4291897433 @default.
- W4386590930 hasRelatedWork W4312417841 @default.
- W4386590930 hasRelatedWork W4321369474 @default.
- W4386590930 hasVolume "11" @default.
- W4386590930 isParatext "false" @default.
- W4386590930 isRetracted "false" @default.
- W4386590930 workType "article" @default.