Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386598350> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4386598350 abstract "The importance of document digitization has increased due to recent technological advancements, including in the medical field. Digitization of medical records plays a vital role in the healthcare sector as it helps expedite emergency treatment. Due to the scarcity of published studies and public German textual resources, a medical records database with German handwriting was collected and digitized. In this study, document digitization was accomplished by implementing deep learning, region of interest (ROI) detection, and optical character recognition (OCR) on a dataset containing medical forms filled with German and English characters. To find the best model for ROI detection, YOLOv5, and SSDResNet50 models were utilized and compared with YOLOv5 producing a better mean average precision (mAP) of 0.91. OCR was then carried out on the output from YOLOv5 with two different methods again for comparison. The Gated-CNN-BLSTM algorithm yielded a character error rate (CER) of 9%, while transformer-based OCR (TrOCR) achieved a CER of 6%. The proposed system could be implemented and further tested in local hospitals, with the OCR dictionary being expandable to include other Roman character-based languages." @default.
- W4386598350 created "2023-09-12" @default.
- W4386598350 creator A5020895712 @default.
- W4386598350 creator A5092844074 @default.
- W4386598350 date "2023-10-08" @default.
- W4386598350 modified "2023-09-30" @default.
- W4386598350 title "Optical Character Recognition for Medical Records Digitization with Deep Learning" @default.
- W4386598350 cites W2031094399 @default.
- W4386598350 cites W2785820430 @default.
- W4386598350 cites W2786974559 @default.
- W4386598350 cites W2896598218 @default.
- W4386598350 cites W2963037989 @default.
- W4386598350 cites W3156786002 @default.
- W4386598350 cites W3186469635 @default.
- W4386598350 cites W3189050137 @default.
- W4386598350 doi "https://doi.org/10.1109/icip49359.2023.10222038" @default.
- W4386598350 hasPublicationYear "2023" @default.
- W4386598350 type Work @default.
- W4386598350 citedByCount "0" @default.
- W4386598350 crossrefType "proceedings-article" @default.
- W4386598350 hasAuthorship W4386598350A5020895712 @default.
- W4386598350 hasAuthorship W4386598350A5092844074 @default.
- W4386598350 hasBestOaLocation W43865983501 @default.
- W4386598350 hasConcept C108583219 @default.
- W4386598350 hasConcept C115961682 @default.
- W4386598350 hasConcept C154945302 @default.
- W4386598350 hasConcept C204321447 @default.
- W4386598350 hasConcept C2524010 @default.
- W4386598350 hasConcept C2779308522 @default.
- W4386598350 hasConcept C2780861071 @default.
- W4386598350 hasConcept C28490314 @default.
- W4386598350 hasConcept C31972630 @default.
- W4386598350 hasConcept C33923547 @default.
- W4386598350 hasConcept C41008148 @default.
- W4386598350 hasConcept C546480517 @default.
- W4386598350 hasConcept C67905146 @default.
- W4386598350 hasConceptScore W4386598350C108583219 @default.
- W4386598350 hasConceptScore W4386598350C115961682 @default.
- W4386598350 hasConceptScore W4386598350C154945302 @default.
- W4386598350 hasConceptScore W4386598350C204321447 @default.
- W4386598350 hasConceptScore W4386598350C2524010 @default.
- W4386598350 hasConceptScore W4386598350C2779308522 @default.
- W4386598350 hasConceptScore W4386598350C2780861071 @default.
- W4386598350 hasConceptScore W4386598350C28490314 @default.
- W4386598350 hasConceptScore W4386598350C31972630 @default.
- W4386598350 hasConceptScore W4386598350C33923547 @default.
- W4386598350 hasConceptScore W4386598350C41008148 @default.
- W4386598350 hasConceptScore W4386598350C546480517 @default.
- W4386598350 hasConceptScore W4386598350C67905146 @default.
- W4386598350 hasLocation W43865983501 @default.
- W4386598350 hasOpenAccess W4386598350 @default.
- W4386598350 hasPrimaryLocation W43865983501 @default.
- W4386598350 hasRelatedWork W2028958034 @default.
- W4386598350 hasRelatedWork W2034717432 @default.
- W4386598350 hasRelatedWork W2392408175 @default.
- W4386598350 hasRelatedWork W2773616286 @default.
- W4386598350 hasRelatedWork W2907171798 @default.
- W4386598350 hasRelatedWork W2982312811 @default.
- W4386598350 hasRelatedWork W3000157355 @default.
- W4386598350 hasRelatedWork W4249539542 @default.
- W4386598350 hasRelatedWork W4386598350 @default.
- W4386598350 hasRelatedWork W2309915465 @default.
- W4386598350 isParatext "false" @default.
- W4386598350 isRetracted "false" @default.
- W4386598350 workType "article" @default.