Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386598474> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4386598474 abstract "3D meshes are getting popular in both research and industry. However, the meshes obtained via the 3D scanning equipment frequently contain a high level of noise. In this paper, we present a Gaussian Curvature Driven Multi-stream Network (GCM-Net) based on graph convolutional networks. This network can remove the noise while preserving the essential features during the 3D mesh denoising process. Our method is the first attempt to apply the high-order feature (i.e., Gaussian curvature) in the denoising task, which is more descriptive for the shape of the mesh. GCM-Net consists of curvature stream, vertex stream, and face normal stream, where the curvature stream focuses on the high-order Gaussian curvature feature of 3D mesh. Our method achieves state-of-the-art results on a publicly available dataset, demonstrating its effectiveness. The proposed method can be applied in various applications, such as 3D human body modeling, metaverse, object tracking and biomedical visualization." @default.
- W4386598474 created "2023-09-12" @default.
- W4386598474 creator A5022214509 @default.
- W4386598474 creator A5046768824 @default.
- W4386598474 creator A5048212986 @default.
- W4386598474 creator A5072731776 @default.
- W4386598474 date "2023-10-08" @default.
- W4386598474 modified "2023-09-30" @default.
- W4386598474 title "A Multi-Stream Network for Mesh Denoising Via Graph Neural Networks with Gaussian Curvature" @default.
- W4386598474 cites W1626653188 @default.
- W4386598474 cites W2042460596 @default.
- W4386598474 cites W2067788981 @default.
- W4386598474 cites W2071678661 @default.
- W4386598474 cites W2097869901 @default.
- W4386598474 cites W2109452619 @default.
- W4386598474 cites W2114175003 @default.
- W4386598474 cites W2116014169 @default.
- W4386598474 cites W2125065112 @default.
- W4386598474 cites W2135957668 @default.
- W4386598474 cites W2408507786 @default.
- W4386598474 cites W2551040565 @default.
- W4386598474 cites W2580772840 @default.
- W4386598474 cites W2791092480 @default.
- W4386598474 cites W2937139884 @default.
- W4386598474 cites W2950841483 @default.
- W4386598474 cites W3021053382 @default.
- W4386598474 cites W3035145671 @default.
- W4386598474 cites W3044408173 @default.
- W4386598474 cites W3111003422 @default.
- W4386598474 cites W3212309639 @default.
- W4386598474 cites W4283820652 @default.
- W4386598474 doi "https://doi.org/10.1109/icip49359.2023.10222463" @default.
- W4386598474 hasPublicationYear "2023" @default.
- W4386598474 type Work @default.
- W4386598474 citedByCount "0" @default.
- W4386598474 crossrefType "proceedings-article" @default.
- W4386598474 hasAuthorship W4386598474A5022214509 @default.
- W4386598474 hasAuthorship W4386598474A5046768824 @default.
- W4386598474 hasAuthorship W4386598474A5048212986 @default.
- W4386598474 hasAuthorship W4386598474A5072731776 @default.
- W4386598474 hasBestOaLocation W43865984741 @default.
- W4386598474 hasConcept C11413529 @default.
- W4386598474 hasConcept C121684516 @default.
- W4386598474 hasConcept C132525143 @default.
- W4386598474 hasConcept C153180895 @default.
- W4386598474 hasConcept C154945302 @default.
- W4386598474 hasConcept C16140857 @default.
- W4386598474 hasConcept C163294075 @default.
- W4386598474 hasConcept C16977076 @default.
- W4386598474 hasConcept C175017881 @default.
- W4386598474 hasConcept C195065555 @default.
- W4386598474 hasConcept C2524010 @default.
- W4386598474 hasConcept C31487907 @default.
- W4386598474 hasConcept C31972630 @default.
- W4386598474 hasConcept C33923547 @default.
- W4386598474 hasConcept C41008148 @default.
- W4386598474 hasConcept C80444323 @default.
- W4386598474 hasConcept C80899671 @default.
- W4386598474 hasConcept C81363708 @default.
- W4386598474 hasConceptScore W4386598474C11413529 @default.
- W4386598474 hasConceptScore W4386598474C121684516 @default.
- W4386598474 hasConceptScore W4386598474C132525143 @default.
- W4386598474 hasConceptScore W4386598474C153180895 @default.
- W4386598474 hasConceptScore W4386598474C154945302 @default.
- W4386598474 hasConceptScore W4386598474C16140857 @default.
- W4386598474 hasConceptScore W4386598474C163294075 @default.
- W4386598474 hasConceptScore W4386598474C16977076 @default.
- W4386598474 hasConceptScore W4386598474C175017881 @default.
- W4386598474 hasConceptScore W4386598474C195065555 @default.
- W4386598474 hasConceptScore W4386598474C2524010 @default.
- W4386598474 hasConceptScore W4386598474C31487907 @default.
- W4386598474 hasConceptScore W4386598474C31972630 @default.
- W4386598474 hasConceptScore W4386598474C33923547 @default.
- W4386598474 hasConceptScore W4386598474C41008148 @default.
- W4386598474 hasConceptScore W4386598474C80444323 @default.
- W4386598474 hasConceptScore W4386598474C80899671 @default.
- W4386598474 hasConceptScore W4386598474C81363708 @default.
- W4386598474 hasLocation W43865984741 @default.
- W4386598474 hasOpenAccess W4386598474 @default.
- W4386598474 hasPrimaryLocation W43865984741 @default.
- W4386598474 hasRelatedWork W1599633360 @default.
- W4386598474 hasRelatedWork W160857080 @default.
- W4386598474 hasRelatedWork W2029956920 @default.
- W4386598474 hasRelatedWork W2114175003 @default.
- W4386598474 hasRelatedWork W2368500007 @default.
- W4386598474 hasRelatedWork W2789916367 @default.
- W4386598474 hasRelatedWork W2964229507 @default.
- W4386598474 hasRelatedWork W3012582107 @default.
- W4386598474 hasRelatedWork W31858654 @default.
- W4386598474 hasRelatedWork W4361019495 @default.
- W4386598474 isParatext "false" @default.
- W4386598474 isRetracted "false" @default.
- W4386598474 workType "article" @default.