Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386599798> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4386599798 endingPage "11" @default.
- W4386599798 startingPage "1" @default.
- W4386599798 abstract "At present, the gap of agricultural talents in China is continuously widening, and most enterprises lack agricultural core talents, which has caused great impact on the social economy. To solve this problem, an improved AHP-KNN algorithm is proposed by combining the analytic hierarchy process (AHP) and the optimized K-nearest neighbor algorithm, and an agricultural talent training model is proposed based on this algorithm. The results show that the classification accuracy and classification time of the improved AHP-KNN algorithm are 96.2% and 27.5 seconds, respectively, both of which are superior to the comparison algorithm. The result shows that the classification accuracy of agricultural talents can be improved by using this algorithm. Therefore, the model can be used to classify agricultural talents with the same characteristics into one class, carry out targeted training, and train all-round agricultural talents efficiently and quickly, so as to improve the serious shortage of agricultural talents at present." @default.
- W4386599798 created "2023-09-12" @default.
- W4386599798 creator A5061392284 @default.
- W4386599798 creator A5081168201 @default.
- W4386599798 creator A5087197094 @default.
- W4386599798 date "2023-09-11" @default.
- W4386599798 modified "2023-10-17" @default.
- W4386599798 title "Construction and Application of Agricultural Talent Training Model Based on AHP-KNN Algorithm" @default.
- W4386599798 cites W2783168461 @default.
- W4386599798 cites W2921079059 @default.
- W4386599798 cites W2958839282 @default.
- W4386599798 cites W3043176018 @default.
- W4386599798 cites W3089196758 @default.
- W4386599798 cites W3090487895 @default.
- W4386599798 cites W3094418261 @default.
- W4386599798 cites W3110407708 @default.
- W4386599798 cites W3118298518 @default.
- W4386599798 cites W3120450791 @default.
- W4386599798 cites W3148302677 @default.
- W4386599798 cites W3163892338 @default.
- W4386599798 cites W3165066308 @default.
- W4386599798 cites W3171875624 @default.
- W4386599798 cites W3172921008 @default.
- W4386599798 cites W3192714404 @default.
- W4386599798 cites W3207835981 @default.
- W4386599798 cites W4211162193 @default.
- W4386599798 cites W4220776457 @default.
- W4386599798 cites W4312583485 @default.
- W4386599798 doi "https://doi.org/10.1155/2023/5745955" @default.
- W4386599798 hasPublicationYear "2023" @default.
- W4386599798 type Work @default.
- W4386599798 citedByCount "0" @default.
- W4386599798 crossrefType "journal-article" @default.
- W4386599798 hasAuthorship W4386599798A5061392284 @default.
- W4386599798 hasAuthorship W4386599798A5081168201 @default.
- W4386599798 hasAuthorship W4386599798A5087197094 @default.
- W4386599798 hasBestOaLocation W43865997981 @default.
- W4386599798 hasConcept C111919701 @default.
- W4386599798 hasConcept C113238511 @default.
- W4386599798 hasConcept C11413529 @default.
- W4386599798 hasConcept C118518473 @default.
- W4386599798 hasConcept C119857082 @default.
- W4386599798 hasConcept C124101348 @default.
- W4386599798 hasConcept C127413603 @default.
- W4386599798 hasConcept C138885662 @default.
- W4386599798 hasConcept C153294291 @default.
- W4386599798 hasConcept C154945302 @default.
- W4386599798 hasConcept C166957645 @default.
- W4386599798 hasConcept C194051981 @default.
- W4386599798 hasConcept C205649164 @default.
- W4386599798 hasConcept C2777211547 @default.
- W4386599798 hasConcept C2778137410 @default.
- W4386599798 hasConcept C41008148 @default.
- W4386599798 hasConcept C41895202 @default.
- W4386599798 hasConcept C42475967 @default.
- W4386599798 hasConcept C87345402 @default.
- W4386599798 hasConcept C98045186 @default.
- W4386599798 hasConceptScore W4386599798C111919701 @default.
- W4386599798 hasConceptScore W4386599798C113238511 @default.
- W4386599798 hasConceptScore W4386599798C11413529 @default.
- W4386599798 hasConceptScore W4386599798C118518473 @default.
- W4386599798 hasConceptScore W4386599798C119857082 @default.
- W4386599798 hasConceptScore W4386599798C124101348 @default.
- W4386599798 hasConceptScore W4386599798C127413603 @default.
- W4386599798 hasConceptScore W4386599798C138885662 @default.
- W4386599798 hasConceptScore W4386599798C153294291 @default.
- W4386599798 hasConceptScore W4386599798C154945302 @default.
- W4386599798 hasConceptScore W4386599798C166957645 @default.
- W4386599798 hasConceptScore W4386599798C194051981 @default.
- W4386599798 hasConceptScore W4386599798C205649164 @default.
- W4386599798 hasConceptScore W4386599798C2777211547 @default.
- W4386599798 hasConceptScore W4386599798C2778137410 @default.
- W4386599798 hasConceptScore W4386599798C41008148 @default.
- W4386599798 hasConceptScore W4386599798C41895202 @default.
- W4386599798 hasConceptScore W4386599798C42475967 @default.
- W4386599798 hasConceptScore W4386599798C87345402 @default.
- W4386599798 hasConceptScore W4386599798C98045186 @default.
- W4386599798 hasFunder F4320321106 @default.
- W4386599798 hasLocation W43865997981 @default.
- W4386599798 hasOpenAccess W4386599798 @default.
- W4386599798 hasPrimaryLocation W43865997981 @default.
- W4386599798 hasRelatedWork W2387708778 @default.
- W4386599798 hasRelatedWork W2389110696 @default.
- W4386599798 hasRelatedWork W2961085424 @default.
- W4386599798 hasRelatedWork W3046775127 @default.
- W4386599798 hasRelatedWork W3148954008 @default.
- W4386599798 hasRelatedWork W4285260836 @default.
- W4386599798 hasRelatedWork W4286629047 @default.
- W4386599798 hasRelatedWork W4306321456 @default.
- W4386599798 hasRelatedWork W4306674287 @default.
- W4386599798 hasRelatedWork W4224009465 @default.
- W4386599798 hasVolume "2023" @default.
- W4386599798 isParatext "false" @default.
- W4386599798 isRetracted "false" @default.
- W4386599798 workType "article" @default.