Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386600148> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4386600148 endingPage "110838" @default.
- W4386600148 startingPage "110838" @default.
- W4386600148 abstract "Salp swarm algorithm (SSA) is one of the recently developed meta-heuristic optimization algorithms. Since SSA outperforms other swarm-based algorithms, it has recently been employed in various applications, including feature selection, neural network training and renewable energy systems. In this paper, an improved salp swarm algorithm based on a Gaussian random walk is proposed, which enhances the algorithm’s performance particularly for multidimensional constrained global optimization problems. The integration of a Gaussian random walk into the algorithm balances between its exploration and exploitation capabilities. Furthermore, the proposed algorithm introduces a new re-dispersion strategy in the case of stagnation at local optimum points, which considerably enhances exploration. The performance of the proposed algorithm is evaluated using a set of twenty-three benchmark test functions and is compared to the performance of prevalent metaheuristic algorithms. Statistical analysis is performed using Wilcoxon signed-rank test, and the results reveal considerable improvement over the competing algorithms. Then, 21 real-world optimization problems are used to further evaluate the efficacy of the proposed algorithm. The winners of the CEC2020 Competition on Real-World Single Objective Constrained Optimization, SASS, sCMAgES, EnMODE, and COLSHADE algorithms, are used as four comparable algorithms in the real-world optimization problems. The convergence curves and simulations provide very competitive performance compared to the comparative algorithms. The proposed algorithm is used to address one of the most challenging real-world constrained problems in power system applications, namely, determining the optimal charging schedule for electric vehicles at charging stations. The results reveal that the proposed algorithm outperforms other existing algorithms in terms of increasing the charging revenues and achieving maximum power grid stability." @default.
- W4386600148 created "2023-09-12" @default.
- W4386600148 creator A5007663604 @default.
- W4386600148 creator A5027067625 @default.
- W4386600148 creator A5028532189 @default.
- W4386600148 creator A5090783556 @default.
- W4386600148 date "2023-11-01" @default.
- W4386600148 modified "2023-10-18" @default.
- W4386600148 title "A Gaussian random walk salp swarm algorithm for optimal dynamic charging of electric vehicles" @default.
- W4386600148 cites W2065401134 @default.
- W4386600148 cites W2474328330 @default.
- W4386600148 cites W2486762742 @default.
- W4386600148 cites W2523502388 @default.
- W4386600148 cites W2738900493 @default.
- W4386600148 cites W2782513934 @default.
- W4386600148 cites W2805250513 @default.
- W4386600148 cites W2883013658 @default.
- W4386600148 cites W2889803518 @default.
- W4386600148 cites W2915062141 @default.
- W4386600148 cites W2917157151 @default.
- W4386600148 cites W2919054863 @default.
- W4386600148 cites W2921340059 @default.
- W4386600148 cites W2921575212 @default.
- W4386600148 cites W2972093761 @default.
- W4386600148 cites W2990723369 @default.
- W4386600148 cites W3007317032 @default.
- W4386600148 cites W3015290284 @default.
- W4386600148 cites W3031120581 @default.
- W4386600148 cites W3046319801 @default.
- W4386600148 cites W3046470293 @default.
- W4386600148 cites W3094704314 @default.
- W4386600148 cites W4205106864 @default.
- W4386600148 cites W4236159811 @default.
- W4386600148 doi "https://doi.org/10.1016/j.asoc.2023.110838" @default.
- W4386600148 hasPublicationYear "2023" @default.
- W4386600148 type Work @default.
- W4386600148 citedByCount "0" @default.
- W4386600148 crossrefType "journal-article" @default.
- W4386600148 hasAuthorship W4386600148A5007663604 @default.
- W4386600148 hasAuthorship W4386600148A5027067625 @default.
- W4386600148 hasAuthorship W4386600148A5028532189 @default.
- W4386600148 hasAuthorship W4386600148A5090783556 @default.
- W4386600148 hasConcept C109718341 @default.
- W4386600148 hasConcept C11413529 @default.
- W4386600148 hasConcept C126255220 @default.
- W4386600148 hasConcept C13280743 @default.
- W4386600148 hasConcept C154945302 @default.
- W4386600148 hasConcept C181335050 @default.
- W4386600148 hasConcept C185798385 @default.
- W4386600148 hasConcept C205649164 @default.
- W4386600148 hasConcept C33923547 @default.
- W4386600148 hasConcept C41008148 @default.
- W4386600148 hasConceptScore W4386600148C109718341 @default.
- W4386600148 hasConceptScore W4386600148C11413529 @default.
- W4386600148 hasConceptScore W4386600148C126255220 @default.
- W4386600148 hasConceptScore W4386600148C13280743 @default.
- W4386600148 hasConceptScore W4386600148C154945302 @default.
- W4386600148 hasConceptScore W4386600148C181335050 @default.
- W4386600148 hasConceptScore W4386600148C185798385 @default.
- W4386600148 hasConceptScore W4386600148C205649164 @default.
- W4386600148 hasConceptScore W4386600148C33923547 @default.
- W4386600148 hasConceptScore W4386600148C41008148 @default.
- W4386600148 hasLocation W43866001481 @default.
- W4386600148 hasOpenAccess W4386600148 @default.
- W4386600148 hasPrimaryLocation W43866001481 @default.
- W4386600148 hasRelatedWork W1494790829 @default.
- W4386600148 hasRelatedWork W2026243033 @default.
- W4386600148 hasRelatedWork W2149342094 @default.
- W4386600148 hasRelatedWork W2371863925 @default.
- W4386600148 hasRelatedWork W2961314961 @default.
- W4386600148 hasRelatedWork W3000981632 @default.
- W4386600148 hasRelatedWork W3004013122 @default.
- W4386600148 hasRelatedWork W3174527952 @default.
- W4386600148 hasRelatedWork W4285709456 @default.
- W4386600148 hasRelatedWork W4297536357 @default.
- W4386600148 hasVolume "147" @default.
- W4386600148 isParatext "false" @default.
- W4386600148 isRetracted "false" @default.
- W4386600148 workType "article" @default.