Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386600923> ?p ?o ?g. }
- W4386600923 endingPage "7787" @default.
- W4386600923 startingPage "7787" @default.
- W4386600923 abstract "Barrier coverage is a fundamental application in wireless sensor networks, which are widely used for smart cities. In applications, the sensors form a barrier for the intruders and protect an area through intrusion detection. In this paper, we study a new branch of barrier coverage, namely warning barrier coverage (WBC). Different from the classic barrier coverage, WBC has the inverse protect direction, which moves the sensors surrounding a dangerous region and protects any unexpected visitors by warning them away from the dangers. WBC holds a promising prospect in many danger keep out applications for smart cities. For example, a WBC can enclose the debris area in the sea and alarm any approaching ships in order to avoid their damaging propellers. One special feature of WBC is that the target region is usually dangerous and its boundary is previously unknown. Hence, the scattered mobile nodes need to detect the boundary and form the barrier coverage themselves. It is challenging to form these distributed sensor nodes into a barrier because a node can sense only the local information and there is no global information of the unknown region or other nodes. To this end, in response to the newly proposed issue of the formation of barrier cover, we propose a novel solution AutoBar for mobile sensor nodes to automatically form a WBC for smart cities. Notably, this is the first work to trigger the coverage problem of the alarm barrier, wherein the regional information is not pre-known. To pursue the high coverage quality, we theoretically derive the optimal distribution pattern of sensor nodes using convex theory. Based on the analysis, we design a fully distributed algorithm that enables nodes to collaboratively move toward the optimal distribution pattern. In addition, AutoBar is able to reorganize the barrier even if any node is broken. To validate the feasibility of AutoBar, we develop the prototype of the specialized mobile node, which consists of two kinds of sensors: one for boundary detection and another for visitor detection. Based on the prototype, we conduct extensive real trace-driven simulations in various smart city scenarios. Performance results demonstrate that AutoBar outperforms the existing barrier coverage strategies in terms of coverage quality, formation duration, and communication overhead." @default.
- W4386600923 created "2023-09-12" @default.
- W4386600923 creator A5010238405 @default.
- W4386600923 creator A5010755184 @default.
- W4386600923 creator A5016012780 @default.
- W4386600923 creator A5031035100 @default.
- W4386600923 creator A5041101003 @default.
- W4386600923 creator A5054805245 @default.
- W4386600923 creator A5058990485 @default.
- W4386600923 creator A5071084450 @default.
- W4386600923 creator A5072308822 @default.
- W4386600923 date "2023-09-10" @default.
- W4386600923 modified "2023-10-17" @default.
- W4386600923 title "AutoBar: Automatic Barrier Coverage Formation for Danger Keep Out Applications in Smart City" @default.
- W4386600923 cites W1967174914 @default.
- W4386600923 cites W1969477366 @default.
- W4386600923 cites W1973580813 @default.
- W4386600923 cites W1974977174 @default.
- W4386600923 cites W1978937583 @default.
- W4386600923 cites W1994164543 @default.
- W4386600923 cites W2010900291 @default.
- W4386600923 cites W2013145225 @default.
- W4386600923 cites W2066472680 @default.
- W4386600923 cites W2078927150 @default.
- W4386600923 cites W2085304782 @default.
- W4386600923 cites W2089108971 @default.
- W4386600923 cites W2110996334 @default.
- W4386600923 cites W2124230236 @default.
- W4386600923 cites W2124667243 @default.
- W4386600923 cites W2127862223 @default.
- W4386600923 cites W2133846868 @default.
- W4386600923 cites W2527896777 @default.
- W4386600923 cites W2743384080 @default.
- W4386600923 cites W2771673973 @default.
- W4386600923 cites W2910193351 @default.
- W4386600923 cites W3008004464 @default.
- W4386600923 cites W3199880557 @default.
- W4386600923 cites W4205247892 @default.
- W4386600923 cites W4245448533 @default.
- W4386600923 cites W4285136924 @default.
- W4386600923 cites W4289939077 @default.
- W4386600923 cites W4293093652 @default.
- W4386600923 cites W4297499156 @default.
- W4386600923 cites W4311413107 @default.
- W4386600923 cites W4312420188 @default.
- W4386600923 cites W4361855169 @default.
- W4386600923 cites W4383501601 @default.
- W4386600923 cites W4386299123 @default.
- W4386600923 doi "https://doi.org/10.3390/s23187787" @default.
- W4386600923 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37765844" @default.
- W4386600923 hasPublicationYear "2023" @default.
- W4386600923 type Work @default.
- W4386600923 citedByCount "0" @default.
- W4386600923 crossrefType "journal-article" @default.
- W4386600923 hasAuthorship W4386600923A5010238405 @default.
- W4386600923 hasAuthorship W4386600923A5010755184 @default.
- W4386600923 hasAuthorship W4386600923A5016012780 @default.
- W4386600923 hasAuthorship W4386600923A5031035100 @default.
- W4386600923 hasAuthorship W4386600923A5041101003 @default.
- W4386600923 hasAuthorship W4386600923A5054805245 @default.
- W4386600923 hasAuthorship W4386600923A5058990485 @default.
- W4386600923 hasAuthorship W4386600923A5071084450 @default.
- W4386600923 hasAuthorship W4386600923A5072308822 @default.
- W4386600923 hasBestOaLocation W43866009231 @default.
- W4386600923 hasConcept C127413603 @default.
- W4386600923 hasConcept C134306372 @default.
- W4386600923 hasConcept C24590314 @default.
- W4386600923 hasConcept C2780428219 @default.
- W4386600923 hasConcept C31258907 @default.
- W4386600923 hasConcept C33923547 @default.
- W4386600923 hasConcept C35525427 @default.
- W4386600923 hasConcept C38652104 @default.
- W4386600923 hasConcept C41008148 @default.
- W4386600923 hasConcept C62354387 @default.
- W4386600923 hasConcept C62611344 @default.
- W4386600923 hasConcept C66938386 @default.
- W4386600923 hasConcept C78519656 @default.
- W4386600923 hasConceptScore W4386600923C127413603 @default.
- W4386600923 hasConceptScore W4386600923C134306372 @default.
- W4386600923 hasConceptScore W4386600923C24590314 @default.
- W4386600923 hasConceptScore W4386600923C2780428219 @default.
- W4386600923 hasConceptScore W4386600923C31258907 @default.
- W4386600923 hasConceptScore W4386600923C33923547 @default.
- W4386600923 hasConceptScore W4386600923C35525427 @default.
- W4386600923 hasConceptScore W4386600923C38652104 @default.
- W4386600923 hasConceptScore W4386600923C41008148 @default.
- W4386600923 hasConceptScore W4386600923C62354387 @default.
- W4386600923 hasConceptScore W4386600923C62611344 @default.
- W4386600923 hasConceptScore W4386600923C66938386 @default.
- W4386600923 hasConceptScore W4386600923C78519656 @default.
- W4386600923 hasFunder F4320309612 @default.
- W4386600923 hasIssue "18" @default.
- W4386600923 hasLocation W43866009231 @default.
- W4386600923 hasLocation W43866009232 @default.
- W4386600923 hasOpenAccess W4386600923 @default.
- W4386600923 hasPrimaryLocation W43866009231 @default.
- W4386600923 hasRelatedWork W2071870781 @default.
- W4386600923 hasRelatedWork W2163203631 @default.